Series
1 pandas常用数据类型区别
- Series 数组
- DateFrame 矩阵
2 Series(一维 )的创建和查看
pd.Series(data=None,index=None,dtype=None,name=None,copy=False)
- data=None, 注:类型可为 iterable,dict,scalar
- index=None, 注:索引可以重复,索引与data个数需一致
- dtype=None, 注:类型
- name=None, 注:重命名
- copy=False,
- fastpath=False,
fn=pd.Series([5,6,7,8],index=["a","b","c","d"],dtype=float,name="date_name",)
"""
a 5.0
b 6.0
c 7.0
d 8.0
Name: date_name, dtype: float64
"""
fn.dtype
## dtype('float64') 查看数据类型
fn.astype(int)
## dtype: int32 修改数据类型
fn.head(3)
## 查看头3行,默认为头5行
fn.tail(3)
## 查看尾3行,默认为尾5行
3 series的索引与值
• s.index # 查看索引
• s.values # 查看值序列
• s.reset_index(drop=False) # 重置索引
drop # 是否删除原索引 默认为否
fn.index
## Index(['a', 'b', 'c', 'd'], dtype='object') 查看索引
fn.values
## array([5., 6., 7., 8.]) 查看值序列 是数组类型(arrey)
fn.reset_index(drop=True)
##
"""
0 5.0
1 6.0
2 7.0
3 8.0
Name: date_name, dtype: float64
"""
fn.reset_index(drop=False)
"""
index date_name
0 a 5.0
1 b 6.0
2 c 7.0
3 d 8.0
"""
4 Series的索引与切片
fn=pd.Series([5,6,7,8],index=["a","b","c","d"],dtype=float,name="date_name",)
"""
a 5.0
b 6.0
c 7.0
d 8.0
Name: date_name, dtype: float64
"""
## 4种方法
fn["a"] # 5.0 通过标签
fn[1] # 6.0 通过索引
fn.loc["a"] # 5.0 通过标签
fn.iloc[1] # 6.0 通过索引
5 Series运算
- 共同索引对应为运算,其它填充NaN
- 没有共同索引时,则全部为NaN
fn1=pd.Series([1,2,3,4],index=["a","b","c","d"])
fn2=pd.Series([1,2,3,4],index=["a","b","c","d"])
fn3=pd.Series([1,2,3,4,5],index=["a","b","c","d","e"])
fn1+fn2
"""
a 2
b 4
c 6
d 8
dtype: int64
"""
fn1+fn3
"""
a 2.0
b 4.0
c 6.0
d 8.0
e NaN
dtype: float64
"""
fn1+fn4
## 对应共同索引进行运算
"""
a NaN
b 3.0
c 5.0
d 7.0
e NaN
dtype: float64
"""