1、Generalized Embedding Machines for Recommender Systems
链接:https://arxiv.org/pdf/2002.06561
简介:该文是一篇改进因子分解机用于推荐的文章。在这项工作中,提出了一种在嵌入层面上对高阶交互信号进行建模的替代方法,即通用嵌入机(GEM)。
2、Jointly Learning to Recommend and Advertise
链接:https://arxiv.org/pdf/2003.00097
简介:该文提出了一个新颖的两级强化学习框架,以共同优化推荐和广告策略,从而避免推荐任务和广告业务分别进行优化而带来的性能损失。
3、Fast Adaptively Weighted Matrix Factorization for Recommendation with Implicit Feedback
链接:https://arxiv.org/pdf/2003.01892
简介:该文主要针对隐式反馈数据提出了一种自适应权重分配的矩阵分解模型,该方法可以加快模型的学习以及权重的自适应分配。
4、Recommendation on a Budget: Column Space Recovery from Partially Observed Entries with Random or Active Sampling
链接:https://arxiv.org/pdf/2002.11589
简介:该文分析了部分观察到的,近似低秩矩阵的列空间恢复的交替最小化问题。在这项工作中,证明了如果预算大于矩阵的秩,则列空间恢复成功。随着列数的增加,交替最小化的估计会收敛到真实列空间,而概率趋向于一。
5、AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations
链接:https://arxiv.org/pdf/2002.11252
简介:基于深度学习的推荐系统(DLRS)通常具有嵌入层,可用于降低分类变量(例如用户/项目id)的维数并在低维空间中有意义地对其进行转换。现有的大多数DLRS在经验上都会为所有用户/项目嵌入预先定义一个固定且统一的维度。从最近的研究中可以明显看出,对于不同的用户/项目,根据其受欢迎程度,迫切需要不同的嵌入维度。因此,在本文中提出了一种基于AutoML的端到端框架(AutoEmb),该框架可以根据流行程度以自动化和动态的方式生成各种嵌入尺寸。
6、CATA++: A Collaborative Dual Attentive Autoencoder Method for Recommending Scientific Articles
链接:https://arxiv.org/pdf/2002.12277
简介:通过分析混合模型中存在的问题,该文提出了一种用于推荐科学文章的协作式双注意力自动编码器(CATA ++)。 CATA ++利用文章的内容并通过两个并行的自动编码器学习其潜在空间。