Fiddler捕捉数据包有没有大神告诉我是什么加密的

本文探讨了使用 Fiddler 捕获数据包时遇到的加密问题,介绍了如何识别和解析不同类型的加密数据,帮助读者理解和处理相关挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

qFa2g++NjYXTJABSAghZ2iZ51ljvDnGvdhrSY407bNSFtSa0ELK8Nw4Raxfb9vQCFeotFjKew3xEEpWFOu7GM/LUctqqHnPcnDjHb7iPCgn2GOqhA18mW0wZcSXrv4wHAAONd2bSZ8SsuW5lBTjdZbuUYY5Psy0lV2ILO5GLIneMHw4vrXScZw0Wm81AhqOG2ngCPi7bHjDncPnHqqtcUL/MG7uOFWpEEx3weKjFtoeFCQv9bfxaR4wN8KLE0aStFSNb704YSrhdvGnDvjl15Zi2ZhgASBAJTXYjN++g2aFqEWNJFADCJSqB8xnPO7o+U9qRxQc3mHwHWOnXAwCwt5YQ0hG8NPJk9Ihr5TjbAgSlEqeOzH5d1Oo4F/7bkIDqP9ESObgIaf0CUgGHRnUtRTbTkYhv/9SRIqkDz9evGNfSBCgYS8zjmUHZiLMbTWJpYsHdxEI2rQWqpMXyqogXbAFlakfyzACsHmP1Ev1nNhE2gJcL1DUCbMtAOJE6a3Q9wooSihs1gF2zrFCoSv5/HF03NnLG9VrTHN4IzMbBW3ePpgRajhFcfKDrayoEC63LbYaJNyXOYI5RNvr8CL46VrRqs6ItljjBp6DOjFFYj9OTJ75Cg2t90kUK8Yl5t5mVi2ASfmTo6yyj7kR10SkV3NYfa/Z/GO7Gtfzn7ahMtMt5PiPQBYl9cbYWy57myk909YmFUKhCnVP35iq1LwFwja370WwqFLKz9S3tPuaKPRWDSUG1yXyGaXRbj39jwA/KmUei/Ai0m06/Ze55JsSY52tkxDsYcYOSzBhsQ4XHKWhwXkJ+bRjiuanpgFobbNOYDfnElraFPGJxLg4SjOMUB52s0QFZTBPMtM7mplrN/h5XFQxuqzEmgDqA/Bc2cWvBjpMfemffiv5TyAIOYhpxAq4YNuAmYfGSP44fx+eh85XlbTUc3SYj4t26hRGy3adOQu5ooYgE4zOsC/UESVvJmXowADWZVsUK+LdQQbt/jiUtHEakjD4F2bMdSvKKQ7tN3c+qmt6jau1rw0EtnI0kEBNCmQ52aIu6VvrLOY2nmyJ9jez9XcpsKUcjiaYaMOdyYysG8xjPjkYASOLYJkEt1c7NQMW8Mm1n3Yf9Weh0rcbHMrYuMAgIuSTaxtf6FQ6Pbe/4bnYpjCn4U1vQPK+hxewDckm3wUfFx2Imu3EEimnJ1jqd3skS9QsykUA4KiRykeGLBVIgTGVDoxxg0B6Bqxw0DWpGIZYOuXp5eKk58btke59WbsZaCs/k+O4WRD1xcXOB34rCz/Rl+BeXp1D4OtxtBKzw5B0sHLZnY+hxNgaSxKGsTlAVtJO8tXikHWl7odzLAJ5OdKHizGHzbHf9f9HECZdYfVK+ckDV3jGRdbh9OYqsEA6Z6gFSSeSQvXkZPP/Ka6ZzlWCA3tCPu4XtOSaPz13Iydm9J8Ld2G0va3jQxnsYmw+soQs076acqdOusy/h8Zxk3+pfVOdBxiseMY5tQZMZDvMdl++i4cynWMs4Guwqu6CX0kjXEFYR5ENCrRIdm57EeqLRA2HH7qBQXUla2CMGPxU+Bk9CcU7YPcb0NJQ6wJjtOEzsZgBjCT5lotBzXn2ksVp1pCznyV4yybkwArux0rZKIJXHmoPbUX21XdXi0QI7tprp2WXEwusT5v5qZrk3JbdZZGfL0Sqir9M9talU3MSjTINbD0iipYBqqzx3uFLinTStFkSagexLAUm+7511HFWsX8wIz9xJ/grnJExUYVNwsG7Ae9kN93bY1M1mRPVr3DwhlpPBzh/yG29sB0IEYQBntY6YGEUId/qXs/dpmhRKBNNQ8JBW/D/t6J/19nDlD9hmzxuTZVVWk+OJ+B6GW/VUQS60sdYyXPOTTSsQHfG9FrJdQlAybHtSX1gq+HLwfl83gN8ANQDfo2qEiTRhFaorOdGWxLYhhQTOh6DSvRPlLSf7iy/zWb4juBMFr27mTr1YsssmzStFZf6EY6QP5g3azg7+QzGmKVbHByzsuSaoRQHYXSyMDK/SkHxGZEJzL0Fj3KPE39h+9wOsBa8iLTVduBFCvC+xaL+lpXTeCAwpG2Gdowur5xCB/pLUfQeFrKho9x/MvH3FPARtDWwXFsiOI59KPVKrG/i3Mm1D9OW/93qN40eIcMfHmcsg/NzeTCAQJdu6pE//eph1blFLgn9DajzgI7+NyTa0m+zLBHAXRD0/pkRNd0NbEwkaBenbQ/zQS2MkyxCxkaZVqTDNUTP/sBqTxPlK+k7g3y/DgDlLGY5jMuY6nhy3q+Wf+zl/tfiIhSLNBMaC/pOKmLLZ3t/D0L4RxYBb71M/7SoGXK0/V4EDC9tw9VS+84zpxT2COl1XwUfES+vP2+lHXU16NTvgNq83T2I+dreiUaRm7t2Ucjf19/DQnXKbPxnIIG72ELPPlCV4Yr5I2RJQM12Q9WLWDtt6i67QAXaB/GQB6gcVF0ginn7F8lYeHM03ShQ/KQatp3p1+CK6fQigODed9k24KGN4vSwUaFCkxfKW9TiimLtv1mKjeZITV2ZDFbuIyNtQ/nasnG53i7x5y7lpfRamrsUlleNAJXknHo8b7f5CQQCb/SXPhO9q1uZNLYZ9PyQ1RnNAgRTTtmFkdJ2QE4ETjf6zsEYUlz4oa1T6bYBpfnA0jQ0EWqVrvZcJsOSZEU4HMjJthPgNlRXXV4DaVaY92BNjgzft/AXBik2IG8RDlsw9p9vJBvxlWS6sAQ59euiXuWqh0Hqj6RNqdMyfoHCtZbIolDaLlctquLCKRv6nSSfeegp7yVt0glmFWc3R1BaIKLzKQZ87piY9pnA6oSTFlWVgScuNP0dGmGzerHemuKOhKo9ZlOWRwL3ZW2qsJ/b9Z6P0VcySzSa1ILgDJ6tBlbLNVb6avmghfQUO7nwBTuDj8UMDZiRH4eD1WP62TML85HSm3GCVn1q6+KEhxvJ9/qlUfdy8KOC6jt4Re4Hkz+R9Jyta7CIIEz4Sq9XVwgMNvs+DEzz8FrlL5g7FPGjXI7brQ4uqoQGhPSjoo/ZqX3LSju8Tas78tx7NdJmK41D6qiB49VjQvwLqBX4H9yB/+KfYfRrYEaHasYC/quNZGI3koqscJ73F7hq9oV1TeyeZ48Y75T4vXF6cZ6ddHKPDh4i9dUsVZaruCx5J+zwv0RvZS8KH1uHOO3TqFxovJ2eADi786y6opOqedZ5A5jhpLSMzZLfhFYg0kZht5PF9E3S/gfVmvwCA4bcablBvfTtUxK0gVFvCNHLD17GUobnOmLg1A/LvnQZwXvWvr335qq5OXSfE7jEwQvox3zDwnAUlaD+mHjZ9M9pitQ0bYHPlt+Q6yZgHmo8Fz+MAVLqd11+n3GvocaMKoyn801btfv7sBh/T1plOM2/41QSzQRKxaaStEpyxCs4dyPyiIomccGNAMQWltmgjhVS8oUs3FoM15q0Uw70S6D33041RqXeFcEtcGPtdZUaAVzEIau8tXAnvRPvgtHeiK5UwJTOrz3PP8FLj8SG1HfumdZJXwGEMrp1WM8WHBDQXjL/NhBppBUgsbRoGN3YTZKQyLijxL9pbXapxSEkOQtlbJirUWOr0iLuQoRW8wEBgs7b+XmtmfgQoBg95elR50uOsXOnG6VSvqvs3pNTkCE/oJgevwuvUZy6HVtn8TsbsIuPVksuZIBJgL0IO1i3Zd4cC6QZ0iWLYHcb8VL9+xBm6/hOFfLPLMZdBSfevVxYuu5wewas1/y7qAQpRhb6GtqpJr7GQY8RhNaP5o0dSMhLlQ6maN9GcIETtlyRohGuu4rUY0m3ARi80JsCBX2X9IqvFo03YphDQh6r6TT/Dp9Y/h1rUfiGPYzHIt511yygGIl2hPjWHAOkhTAMIEREWtFWtmeyBgq0iTiV3smPAsxsVRHypZFF3oPQgxCEsTJbLuG//UGMTBqIcQctSKyHQbNclcU/ayicu2wN8R4nr/Og6KJCmO/i+exAej/rPF0OognpaW42ffVFDT2u+eUi9duaBb/+MeelobFjo3dvOTomYj6ZCDhJprlTNvs3laPuZ9lJE6ClJfXdXMCC4xMj/wzRxhGMCiYP7dU3Gi4Due4rdi9VzsBgjlhcmaClR5mqwfYZ2mB+/7h4o6PPfXDmgb3sSFmP+OS4evKU6HiXG5URhe578OzN6w1/JRIc0rJ53xdQwegDspcZuZQrzu9bZbZ1UAchVIBnE1R+MnyPoKjM5XxZgUVtnzXNgH42isHYEEUCew50EG3qCIkl85c2mtaH5J9K185lFhlaJwRRYAA3RlmRghKE0orCVDRvzlc6CywbYJBSybu5mjFAsEIaFJ4RX7JhmRHMzJv+gJjEcI7IPQWfPOk8wLOW26y3lBsElivMtI34SVFmkQKxsMJRVAEbE4dzEmA0fKcpZnJpTiuxvUTrlkDwyTfyj48yqoLMCnjJ/o6JMuGki2f+vMh77gLJ/7ybq900ApT5XaSkvhQ8rW5mrNQDpNNA3Y0KUl2XfEqYq8AYjtSqzb1Tzmk04kzOW9o8ha1wL/U8xZrMQqlGYQD82SjDEQ8L4BPUp1r38STKvTcFcOezruPBH3qkspz5Lp+2KUlNmzHryomY/tq/euaWw3HPulwn1pTgi0EbqwvmrYCLsprjtuy5FjAiQKP7l0RBvc+9h0Iama1ZuVXYWvJGLGm8GDNVlDXeeiqN02PtZCO9cLRCNXXcdyU5aSca6uDgYUyhaouy8S5OxHKrWoxse9JmkvQrG7vIHcShry/BCRnRhmVXQ8tMclbUQxbwiLD0H71Pp9MJSIwALUp2Pbfz1eBb+12FsDrH3kECW+7vi/iXJRwG2n1h8rEQP1t8zh0iw2pXlBPT8k6j3AUsNh31EZFjcR3B58W17tTt08T3r0si2NHYuB6zE0SHdxmCtMvdlxJZLSEgcY8aCumyu2qke1dr8K86qimNuFHvJzwDCOIfliHNZVZ7aTB8H6XOLjy05fNr5kct3V2//jrPqw81+9tQB0vNablUucubiR4IMz+D2WJv5JNyjnBxCFx2dL/Gk6V4wsqTmnBUghRFXcB7IEGQ4GpbPztz//n8ZmFjk4f2S8rts7yRgzR06h+TMAuTiS7YlMTQVQ/PHqyiHsYlkPGJgH3MQ6eXziVIC4obSsBjFp7k++GgQjwRGIn0NJuevSqXC5FY/+TASQIdxByO6YI4KkAin6M24z9zMRGtn2V8GPG74+fU/dXXwkLaPFXmV58QmIRQNd58iaBs2OovehOIho0W7tmkzZH0SQSl5hZsT/PmmUsbWGMbl7xm/wX7begA9b5C9v+iF7YZi1wcVDHDcUBdE7GiJsIh6pWQifLS/o7jLzfJgshsJrpFaMLc5KW802bAhJHV0TLK7PZxg/N9s3PuWYrtE3ufZ6DAKgUv1O4EafDBHP9Vl7wfXB0M85z1uUlfa+r7vQaJOfwPYv1Y4TzpYxDd+O7vZUekG7q9K1MzxBtu4zh/ohGNYJf6GziX9Y3cVznU1RsCWs3DLC76wDxAdpDWBcq/fDVwm727juQAhVFe3GtBmUiP48voAJMeD+CjLaZxJqgmyw8aSPbzDo3u3npPAivdOOQU/NXU7UrNMcN6evyHSWGMCtu7V2mECx9R5tXrPLEIl7EmTFRx75UqYZcP/MBL2iXp2OtSkxTTl5aNWp2NpmOAWjSzhBKMIEsDP1//Te01v3o0MpXGsEoes29FZIgZE5OuA2dZmAkZ2RixZPj2yQHOyJmURkQ6a2t18h2FQ4bFlEMASx8plg/ClPrrEIhH2+d7TCoMWuNjFTCt+w6Oh8ZYaUNN8LuvSD74bPCYsX39gyDnLqXWY8GCepTMnO4MJBZL63fEbq26CNnnhKXmLHCHNhE4th6sy9KcQru6Ni9MS+DLjxMZIiLLIDi+1nWh4WApMIM6IzE2ECaXfFmhaZ15mpfTISP+nHw8t2s0mlyl+JzhSirfQYIgHAy93cE4UDQMwzu95EsjgozGVkREB0LFn6owwRbeoxduFUCOLw/vhDwyfP+k3NecT2p558g8H9fG+Z+GSIlPWabDPdyoivqvwafUrLUEsdip3oot4ePC1nkZJ+qqMPIpxYeEuD6cJqcQkk1Cw/47eK2LQL/83sSCqg2Nnvxy8uJ29c/0YJjIaiyCAE5LwafwRlONmZ6eRYkHpFnc4NnaYJ/OUEebLWZ8V5er1QRQuEfD+PI18efs5SjYoxk1/u2toXf6ofTtkHuZ3EEybariG2r+ScQvreFVTU7/AqXYgCwlNluUJpAhhx+DBdgczmO/tV3EL71qFO2zN4QER+jvSNzyEhNQh1G6mBL4lfsi7oyKj8kxiq8JimWkYj3NZ8akHY3xw4c+lx1ZdcwPuVqN47jlPoAKWMcjqJHY4c5YN3FnWxDlsuMqOjACF2wtet7RFC0ecKk4wYdheimFge1pm2VsXPXk8Fw37PdI3EHtGQHtEGk1TUBz0gI/hBZt4PVHcvwh4WeQfz4PPP/ZeTWSAiJ6T3OmUScUTtyj07eusqsoOsaF4vCOjXmuEKWUaG/EvSvnn/gIYFYls2eF3aQd8d1uPc8ehDmc6KKgYALV26tlm+IWlqCzS9H9+ejM18FxlMkrPcPzJDGSmZzKjqQXRdahU3JNKaGdON0DGL1x0yYisPeGOJKsU/Jz/vs/xlyDyFp4NPS+5AHzci0YiGeDRCGQXI29IlO8gAb3l03/bnHoYXNxehLALp7YoCPmov3EDf5HI/LKEr7OfGEtbSdaHGXshRZbR2szFyTcKIIUIBuSyv65i9778Usf0jWbm9KCUtF8AHbuu3FaUYz0VQblfWAM8t/wLuT4osj8HkZCMR44ToRahR/BNOlwHnHwRXFSZxTl77gHwsZjDZUyWFTiKeu93rBuQr20WhRlevIAWQECgI4fa8YGaVf8UTd4tl5xezWrIbwOZNSs/tqQaAiBCYTWNkHqb1HnbMO0iWF3jCyKecM5zyxgVKt62HF0FltzX2NUxPKriBOzpVZL8f2W2QTFg8VyeNnWjyM9ZqKU0wBf1p4uiiO/9lbZjqpUhS41fdeCx9Nqq6VOlDSQlY6LubWJNPI9JHleBAcaGWvLu8qZTwsylVpVNR97erngkK0O+TxCVpYLmcEO+hpDbNa0lZ6xflJC2cP1XvS0rpKjqFy2BRUz1oCGrEqxyBJdTg2E5napRIWpGzX/jFZR6S4KQ2CV2GFA56puCnW/VdpO6WrKAmuj6xgMrB22w9RjO8H3fF0B9xm3THeqH2AViGQ9m01DMA9uaJlWNbMLy2QXmaUZcRSLKkBs6NYwdDrLexrbj0vOyvGYM1PHF0uUn+6p4gv4PWxDY8KykP5k6ySZMng15fLHJw7SA8RHjjgJptGUQjCFXcGPpTkGLiokgiyIK/vucRBOQVMuR/lufBr1MRGlAqGZWzcdIH50Aj/caMf/cDTY4IyhT9IsrBnw2x/KEifAC5glhgryb5IqgSIlMJEOOqLiE6DYQClkb7rZHuAAq7vwTx6pNJgZ8PsYxNv7jmHa8xOgO5TO8z4KZfRYr670vWxw4qb/dCrDZ7cexHaHp9Su6cbvUzyFInMpECMDyncgDblNj0O2UNcNgkozwwNOAu44ixKrPwJMPSkpvTl4oKA5bRsjYeUm6eTJRMXQ1JuawbspPHojNE4jkZwjuo50Q4Q2KkTnOxWLJan4dfSASLj4jZwCdR4Alsj942wh4mgThczVQytZffIDxI/pDBFj+UVibh3LQXdZbgRIxB/AM8DNLxCN9b2otm2vuBNqx64sqdcSbxwI8nzXz5fmi6ebUG7GEb+EKPfutzcGZkifzyJFJu71twhy5MkxwcjyzNHZEutCEHh9xuzTmKobMZ5u7wSKcBF+16Cajx1b0zzg+I8f8z96vJpDvMSqUz9/Cwgxrx1VJVdyEoxCyTsSByrGwnjCE42hWTT3TRv04rx1K29UaLf71zdhE+0hTR5zPBeWKVqertfa36oVcZES/eOdTvcbIrL1aRQPqyKx6aZciKwTc06t7c7zi/zB/lxSKez45wE9Wrc+ZZPuMd6xdro+BpyolVL6BkY8I/mYC5eO/+W34LyfK2OhtaFBo7PdyiWSz77vumKcEXlgqf2o9Aj7wxkiMON29UjndTtKo2QQ+4zZcRyZyklY1A30dtcLcoZq8caHCyYyrsgRMxxQywVKzLT2+gnC3LPoPnxCJ3NvXXTGuuMzVWk40Lh6rTSMoP0/ljzimbF8WaMa+r2vKnDvGmZzGSqz9S+k9HmzO21JWlyzMzOlbC+CaPwX9LoUlesaQVVfIqw6GbwEuf4gEhJKvqCkQjHp45ssBbIulGa9IE1zFHA==

### 使用Fiddler抓取和分析微信数据包 #### 关闭相关程序和服务 为确保能够顺利抓取微信小程序的数据包,建议先将所有可能干扰抓包过程的应用关闭。具体来说,在开始之前应关闭PC端微信以及任何正在运行的小程序实例[^1]。 #### 清理缓存文件 对于某些特定版本的Windows平台上的微信客户端,可能存在缓存机制影响抓包效果的情况。此时可尝试清理`WMPFRuntime`目录下的缓存文件来解决问题。此操作有助于清除旧有的本地存储资源,使得后续加载的内容更易于被捕捉到。 #### 禁用防火墙 临时禁用系统的防火墙服务可以帮助排除因安全策略而导致无法正常捕获流量的可能性。需要注意的是,在实际环境中应当谨慎对待此类更改,并尽快恢复原有设置以保障网络安全。 #### 登录与初始化环境 重新启动微信应用并登录账号后,移除已安装的小程序再重新添加一次。这一步骤旨在创建一个新的会话上下文以便更好地配合Fiddler工作流。 #### 启动Fiddler准备就绪 确认上述准备工作完成后,开启Fiddler工具等待其完全准备好接收来自目标应用程序发出的HTTP(S)请求。如果遇到HTTPS加密通信,则需提前完成必要的SSL解密配置步骤,比如通过安装由Fiddler自动生成的信任根证书等方式实现透明化的中间人攻击模式[^2]。 #### 测试验证功能可用性 最后可以通过简单的网页浏览行为(例如访问淘宝网)来进行初步的功能测试,观察左侧列表区域是否有对应的网络活动记录显示出来作为成功的标志之一。一旦确认无误便可以继续针对具体的微信场景展开深入探究了。 ```python import requests def test_fiddler_proxy(): proxies = { 'http': 'http://127.0.0.1:8888', 'https': 'https://127.0.0.1:8888' } try: response = requests.get('https://www.taobao.com', verify=False, proxies=proxies) print(f"Status Code: {response.status_code}") print("Response Body:", response.text[:100]) except Exception as e: print(e) test_fiddler_proxy() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值