【Python】模型优化与超参数选择

Tensorflow实现模型优化与超参数选择

import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 模型优化与超参数选择
(train_image, train_label), (test_image, test_label) = tf.keras.datasets.fashion_mnist.load_data()
train_label_onehot = tf.keras.utils.to_categorical(train_label)

test_label_onehot = tf.keras.utils.to_categorical(test_label)

model = tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['acc'])
model.fit(train_image, train_label_onehot, epochs=20)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值