scrapy爬取王者荣耀皮肤

本文介绍使用Scrapy爬虫框架从王者荣耀官网抓取所有英雄皮肤图片的方法。通过定义items,分析网页结构,设置下载中间件及item管道,实现图片按英雄分类存储。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Scrapy爬取王者荣耀皮肤

一、项目需求

爬取王者荣耀官网(https://pvp.qq.com/)所有皮肤图片

要求:

  • 英雄名作为文件夹名
  • 皮肤名作为图片名称
  • 皮肤图片按所属英雄存入对应的文件夹

二、项目解析

  • 定义items文件,设置hero_name、pf_names、image_urls、images字段
  • 分析网页,确定抓取思路
  • 设置spider文件,抓取所有英雄名称、皮肤名称、图片URL
  • 数据过多,设置下载中间件,伪装成浏览器
  • 设置item管道,重写管道类,继承ImagesPipeline,根据需求改变下载路径与图片名称
  • 设置整理settings文件
  • 处理bug

三、项目代码

items.py

import scrapy

class PvpqqItem(scrapy.Item):
    # define the fields for your item here like:
    hero_name = scrapy.Field()      # 英雄名称
    pf_names = scrapy.Field()       # 皮肤名称
    image_urls = scrapy.Field()     # 项目的图像URL
    images = scrapy.Field()         # 有关下载图像的信息字段

pf.py

import scrapy
from ..items import PvpqqItem

class PfSpider(scrapy.Spider):
    name = 'pf'
    # allowed_domains = ['https://pvp.qq.com']
    start_urls = ['https://pvp.qq.com/web201605/herolist.shtml']

    def parse(self, response):
        pf_urls = response.xpath('//ul[@class="herolist clearfix"]/li/a/@href').extract()
        for pf_url in pf_urls:
            yield scrapy.Request(url='https://pvp.qq.com/web201605/%s' % pf_url, callback=self.pf_parse)

    def pf_parse(self, response):
        item = PvpqqItem()
        item['hero_name'] = response.xpath('//h2[@class="cover-name"]/text()').extract_first()
        # '圣骑之力&0|死亡骑士&1|狮心王&13|心灵战警&12' ==》 ['圣骑之力', '死亡骑士', '狮心王', '心灵战警']
        item['pf_names'] = response.xpath('//ul[@class="pic-pf-list pic-pf-list3"]/@data-imgname').re('(.*?)\&\\d+\|?')
        item['image_urls'] = []
        for num in range(1, len(item['pf_names'])+1):
            # //game.gtimg.cn/imgs/yxzj/img201606/heroimg/166/166-mobileskin-1.jpg
            # 去除-后面的字符,再重新进行拼接
            image_url_head = response.xpath('//a[@class="hero-video"]/img/@src').extract_first()[:-5]
            image_url = "https:{}{}.jpg".format(image_url_head, num)
            item['image_urls'].append(image_url)
        yield item

middlewares.py

import random

class RandomUserAgentMiddleware(object):

    def __init__(self, user_agents):
        self.user_agents = user_agents

    @classmethod
    def from_crawler(cls, crawler):
        # 在settings.py文件中加载MY_USER_AGENTS的值
        s = cls(user_agents=crawler.settings.get('MY_USER_AGENTS'))
        return s

    def process_request(self, request, spider):
        # 随机设置User-Agent的值
        agent = random.choice(self.user_agents)
        # 将其赋给Request
        request.headers['User-Agent'] = agent
        # proxy = random.choice(self.proxy)
        # request.meta['proxy'] = proxy
        return None

pipelines.py

import os
from scrapy.pipelines.images import ImagesPipeline
from . import settings


# 继承ImagesPipeline类
class PvpqqPipeline(ImagesPipeline):

    # 此方法是在发送下载请求之前调用,其实此方法本身就是去发送下载请求
    def get_media_requests(self, item, info):
        # 调用原父类方法,发送下载请求并获取返回的结果(request的列表)
        request_objs = super().get_media_requests(item, info)
        # 给每个request对象带上meta属性传入hero_name、pf_name参数,并返回
        for request_obj, num in zip(request_objs, range(0, len(item['pf_names']))):
            request_obj.meta['hero_name'] = item['hero_name']
            request_obj.meta['pf_name'] = item['pf_names'][num]
        return request_objs

    # 此方法是在图片将要被存储的时候调用,用来获取这个图片存储的全部路径
    def file_path(self, request, response=None, info=None):
        # 获取request的meta属性的hero_name作为文件夹名称
        hero_name = request.meta.get('hero_name')
        # 获取request的meta属性的pf_name并拼接作为文件名称
        image_name = request.meta.get('pf_name') + '.jpg'
        # 获取IMAGES_STORE图片的默认地址并拼接
        image_store = settings.IMAGES_STORE
        hero_name_path = os.path.join(image_store, hero_name)
        # 判断地址是否存在,不存则创建
        if not os.path.exists(hero_name_path):
            os.makedirs(hero_name_path)
        # 拼接文件夹地址与图片名图片存储的全部路径并返回
        image_path = os.path.join(hero_name_path, image_name)
        return image_path

settings.py

import os

BOT_NAME = 'pvpqq'
SPIDER_MODULES = ['pvpqq.spiders']
NEWSPIDER_MODULE = 'pvpqq.spiders'

ROBOTSTXT_OBEY = False

DOWNLOADER_MIDDLEWARES = {
   'pvpqq.middlewares.RandomUserAgentMiddleware': 543,
}
# 自定义的图片处理管道
ITEM_PIPELINES = {
   'pvpqq.pipelines.PvpqqPipeline': 300,
}
# 设置所有图片默认地址,必须设置
# IMAGES_STORE = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'imgs')
IMAGES_STORE = 'C:\\Users\\lenovo\\Desktop\\爬虫\\spider_demo\\pvpqq\\imgs'
# 设置图片通道失效时间
IMAGES_EXPIRES = 90
# 设置允许重定向,否则可能找不到图片
MEDIA_ALLOW_REDIRECTS = True
# 切换User_Agent
MY_USER_AGENTS = [
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 "
        "(KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
        "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 "
        "(KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 "
        "(KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 "
        "(KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 "
        "(KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 "
        "(KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 "
        "(KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 "
        "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 "
        "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
]

start.py

from scrapy import cmdline

# 运行此文件代替命令行运行scrapy项目
cmdline.execute("scrapy crawl pf".split(" "))

四、效果截图

在这里插入图片描述

在这里插入图片描述

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值