Python数据分析——Pandas基础

本文详细介绍了Pandas的基础知识,包括pandas介绍、核心数据结构如Series和DataFrame及其操作,以及Jupyter Notebook的使用。内容涵盖pandas的描述性统计、排序、分组聚合、数据表关联操作、透视表与交叉表以及数据可视化。同时,文章以movielens电影评分数据分析为例,展示了数据读取、存储和分析的实践过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas基础

pandas介绍

Python Data Analysis Library

pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入 了大量库和一些标准的数据模型,提供了高效地操作大型结构化数据集所需的工具。

pandas核心数据结构

数据结构是计算机存储、组织数据的方式。 通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

Series

Series可以理解为一个一维的数组,只是index名称可以自己改动。类似于定长的有序字典,有Index和 value。

import pandas as pd
import numpy as np

# 创建一个空的系列
s = pd.Series()
# 从ndarray创建一个系列
data = np.array(['a','b','c','d'])
s = pd.Series(data)
s = pd.Series(data,index=[100,101,102,103])
# 从字典创建一个系列	
data = {
   'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data)
# 从标量创建一个系列
s = pd.Series(5, index=[0, 1, 2, 3])

访问Series中的数据:

# 使用索引检索元素
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[0], s[:3], s[-3:])
# 使用标签检索数据
print(s['a'], s[['a','c','d']])

pandas日期处理

# pandas识别的日期字符串格式
dates = pd.Series(['2011', '2011-02', '2011-03-01', '2011/04/01', 
                   '2011/05/01 01:01:01', '01 Jun 2011'])
# to_datetime() 转换日期数据类型
dates = pd.to_datetime(dates)
print(dates, dates.dtype, type(dates))
print(dates.dt.day)

# datetime类型数据支持日期运算
delta = dates - pd.to_datetime('1970-01-01')
# 获取天数数值
print(delta.dt.days)

Series.dt提供了很多日期相关操作,如下:

Series.dt.year	The year of the datetime.
Series.dt.month	The month as January=1, December=12.
Series.dt.day	The days of the datetime.
Series.dt.hour	The hours of the datetime.
Series.dt.minute	The minutes of the datetime.
Series.dt.second	The seconds of the datetime.
Series.dt.microsecond	The microseconds of the datetime.
Series.dt.week	The week ordinal of the year.
Series.dt.weekofyear	The week ordinal of the year.
Series.dt.dayofweek	The day of the week with Monday=0, Sunday=6.
Series.dt.weekday	The day of the week with Monday=0, Sunday=6.
Series.dt.dayofyear	The ordinal day of the year.
Series.dt.quarter	The quarter of the date.
Series.dt.is_month_start	Indicates whether the date is the first day of the month.
Series.dt.is_month_end	Indicates whether the date is the last day of the month.
Series.dt.is_quarter_start	Indicator for whether the date is the first day of a quarter.
Series.dt.is_quarter_end	Indicator for whether the date is the last day of a quarter.
Series.dt.is_year_start	Indicate whether the date is the first day of a year.
Series.dt.is_year_end	Indicate whether the date is the last day of the year.
Series.dt.is_leap_year	Boolean indicator if the date belongs to a leap year.
Series.dt.days_in_month	The number of days in the month.
DateTimeIndex

通过指定周期和频率,使用date.range()函数就可以创建日期序列。 默认情况下,范围的频率是天。

import pandas as pd
# 以日为频率
datelist = pd.date_range('2019/08/21', periods=5)
print(datelist)
# 以月为频率
datelist = pd.date_range('2019/08/21', periods=5,freq='M')
print(datelist)
# 构建某个区间的时间序列
start = pd.datetime(2017, 11, 1)
end = pd.datetime(2017, 11, 5)
dates = pd.date_range(start, end)
print(dates)

bdate_range()用来表示商业日期范围,不同于date_range(),它不包括星期六和星期天。

import pandas as pd
datelist = pd.bdate_range('2011/11/03', periods=5)
print(datelist)
DataFrame

DataFrame是一个类似于表格的数据类型,可以理解为一个二维数组,索引有两个维度,可更改。DataFrame具有以下特点:

  • 潜在的列是不同的类型
  • 大小可变
  • 标记轴(行和列)
  • 可以对行和列执行算术运算
import pandas as pd

# 创建一个空的DataFrame
df = pd.DataFrame()
print(df)

# 从列表创建DataFrame
data = [1,2,3,4,5]
df = pd.DataFrame(data)
print(df)
data = [['Alex',10],['Bob',12],['Clarke',13]]
df = pd.DataFrame(data,columns=['Name','Age'])
print(df)
data = [['Alex',10],['Bob',12],['Clarke',13]]
df = pd.DataFrame(data,columns=['Name','Age'],dtype=float)
print(df)
data = [{
   'a': 1, 'b': 2},{
   'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
print(df)

# 从字典来创建DataFrame
data = {
   'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data, index=['s1','s2','s3','s4'])
print(df)
data = {
   'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(data)
print(df)
核心数据结构操作

列访问

DataFrame的单列数据为一个Series。根据DataFrame的定义可以 知晓DataFrame是一个带有标签的二维数组,每个标签相当每一列的列名。

import pandas as pd

d = {
   'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
     'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)
print(df['one'])
print(df
世界地图矢量数据可以通过多种网站进行下载。以下是一些提供免费下载世界地图矢量数据的网站: 1. Open Street Map (https://www.openstreetmap.org/): 这个网站可以根据输入的经纬度或手动选定范围来导出目标区域的矢量图。导出的数据格式为osm格式,但只支持矩形范围的地图下载。 2. Geofabrik (http://download.geofabrik.de/): Geofabrik提供按洲际和国家快速下载全国范围的地图数据数据格式支持shape文件格式,包含多个独立图层,如道路、建筑、水域、交通、土地利用分类、自然景观等。数据每天更新一次。 3. bbbike (https://download.bbbike.org/osm/): bbbike提供全球主要的200多个城市的地图数据下载,也可以按照bbox进行下载。该网站还提供全球数据数据格式种类齐全,包括geojson、shp等。 4. GADM (https://gadm.org/index.html): GADM提供按国家或全球下载地图数据的服务。该网站提供多种格式的数据下载。 5. L7 AntV (https://l7.antv.antgroup.com/custom/tools/worldmap): L7 AntV是一个提供标准世界地图矢量数据免费下载的网站。支持多种数据格式下载,包括GeoJSON、KML、JSON、TopJSON、CSV和高清SVG格式等。可以下载中国省、市、县的矢量边界和世界各个国家的矢量边界数据。 以上这些网站都提供了世界地图矢量数据免费下载服务,你可以根据自己的需求选择合适的网站进行下载
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值