Codeforces Round #612 (Div. 2) C. Garland

原题:
Vadim loves decorating the Christmas tree, so he got a beautiful garland as a present. It consists of n light bulbs in a single row. Each bulb has a number from 1 to n (in arbitrary order), such that all the numbers are distinct. While Vadim was solving problems, his home Carp removed some light bulbs from the garland. Now Vadim wants to put them back on.
Vadim wants to put all bulb back on the garland. Vadim defines complexity of a garland to be the number of pairs of adjacent bulbs with numbers with different parity (remainder of the division by 222). For example, the complexity of 1 4 2 3 5 is 2 and the complexity of ​1 3 5 7 6 4 2​ is 111.

No one likes complexity, so Vadim wants to minimize the number of such pairs. Find the way to put all bulbs back on the garland, such that the complexity is as small as possible.

Input

The first line contains a single integer n(1≤n≤100)n (1≤n≤100)n(1≤n≤100) — the number of light bulbs on the garland.

The second line contains n integers p1,p2,…,pn(0≤pi≤n)p1, p2, …, pn (0≤pi≤n)p1,p2,…,pn(0≤pi≤n) — the number on the $ i-th $ bulb, or 000 if it was removed.

Output

Output a single number — the minimum complexity of the garland.

思想:
这道题主要应用分类讨论+动态规划的思想
对于当前已经确定类型的数,只需将其目前状态用前一状态表示即可
而未确定类型的话,则需讨论其为奇或是为偶,并取其小值

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
const int N=105;
int f[N][N][2],a[N];//当前数,可用奇数,当前数奇偶性 0偶1奇 有多少奇偶性相反的组合 
int main(){
	int n,used_odd=0,used_even=0,has_odd,has_even,even,odd,i,j;
	cin>>n;
	even=n/2;odd=n-even;
	for(i=1;i<=n;i++)
	{
	    cin>>a[i];
	    if(a[i]%2==1)
	        used_odd++;
	    else
	        if(a[i]!=0)
	            used_even++;
	}
	memset(f,0x3f3f3f3f,sizeof(f));
	has_even=even-used_even;
	has_odd=odd-used_odd;
	if(a[1]==0)//第一个就需要选择 
	    f[1][has_odd][0]=f[1][has_odd-1][1]=0;
	else
	    if(a[1]%2==1)
	        f[1][has_odd][1]=0;
	    else
	        f[1][has_odd][0]=0;
	for(i=2;i<=n;i++)
	{
		if(a[i]%2==1)
		    for(j=0;j<=has_odd;j++)
		        f[i][j][1]=min(f[i-1][j][1],f[i-1][j][0]+1);
		else
		    if(a[i]!=0)
		        for(j=0;j<=has_odd;j++)
		            f[i][j][0]=min(f[i-1][j][1]+1,f[i-1][j][0]);
		    else
			    for(j=0;j<=has_odd;j++){
			    	f[i][j][0]=min(f[i-1][j][1]+1,f[i-1][j][0]);
		            f[i][j][1]=min(f[i-1][j+1][1],f[i-1][j+1][0]+1);
				}
	}
	cout<<min(f[n][0][0],f[n][0][1]);
	return 0;
} 
根据引用的内容,CodeForces的初始分由1500改为了1400,并且前六场的初始分配如下:第一场500分,第二场350分,第三场250分,第四场150分,第五场100分,第六场50分。所以,根据你在第一场的表现分为368,你的总分应为868(1400+368)。接下来的五场比赛,你的表现分将根据具体情况来决定。每场比赛的表现分会对你的总分产生影响。 关于其他引用和的代码,它们似乎是一些针对不同情况进行计算和输出的算法,并不直接涉及到CodeForces上的分数计算。所以,如果你有关于CodeForces上分的具体问题,请提供更多详细信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [CodeForces前六场定级赛赋分规则(2020.5修订)及各段位对应分数段](https://blog.csdn.net/Sunshine_xiaohao/article/details/112106625)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [CodeForces上分日记 (思维题)(A. Garland)1809A (Educational Round 145 For Div.2)](https://blog.csdn.net/weixin_60375636/article/details/130243342)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [【codeforces】一切为了上分:骚操作合集](https://blog.csdn.net/weixin_45497996/article/details/109157711)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值