完全平方数

完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

提示:

1 <= n <= 104

解题思路:
本题可以转换为完全背包问题,使用动态规划解决。
完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?
dp[j]:和为j的完全平方数的最少数量为dp[j]。
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。

class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        //初始化dp为最大值
        for (int i = 0; i < dp.length; i++) {
            dp[i] = n + 1;
        }
        dp[0] = 0;
        for (int i = 0; i <= n; i++) { //遍历背包
            for (int j = 0; j * j <= i; j++) { //遍历物品
                dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
            }
        }
        return dp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值