Wireshark 实验

本文详细介绍了数据链路层Ethernet帧结构、MAC地址与ARP解析,网络层IP包结构、分段与TTL,以及传输层TCP/UDP和应用层DNS解析与HTTP请求。通过实例演示和Wireshark抓包,揭示了网络通信的基本原理和协议细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据链路层

实作一 熟悉 Ethernet 帧结构

使用 Wireshark 任意进行抓包,熟悉 Ethernet 帧的结构,如:目的 MAC、源 MAC、类型、字段等。
在这里插入图片描述
从图中选中的两项可以知道源MAC地址和目的MAC地址
在这里插入图片描述
通过ipconfig /all 可以证实这一点
在这里插入图片描述
通过Type可以得知类型为IPv4,类型字段为0x0800

Wireshark 展现给我们的帧中没有校验字段,请了解一下原因。

在这里插入图片描述
我们可以从User Datagram Protocol这一栏中可以发现,校验码未启动。
这是因为有时校验和会由网卡计算,这时wireshark抓到的本机发送的数据包的校验和都是错误的,所以默认关闭了WireShark自己的校验。

实作二 了解子网内/外通信时的 MAC 地址

  1. ping 你旁边的计算机(同一子网),同时用 Wireshark 抓这些包(可使用 icmp 关键字进行过滤以利于分析),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址是多少?这个 MAC 地址是谁的?
    在这里插入图片描述
    可以发现目的MAC为旁边计算机的MAC地址
  2. 然后 ping qige.io (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 icmp 过滤),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址是多少?这个 MAC 地址是谁的?
    使用ip.addr == 104.18.40.82 and icmp进行过滤
    在这里插入图片描述
    通过arp -a 命令,可以查看当前的 arp 缓存
    在这里插入图片描述
    我们可以得到源MAC为本机的MAC地址,目的MAC为网关的MAC地址
  3. 再次 ping www.cqjtu.edu.cn (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 icmp 过滤),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址又是多少?这个 MAC 地址又是谁的?
    在这里插入图片描述
    可以发现,目的MAC同样为网关MAC

通过以上的实验,你会发现:

  1. 访问本子网的计算机时,目的 MAC 就是该主机的
  2. 访问非本子网的计算机时,目的 MAC 是网关的
    请问原因是什么?
    因为本机访问本子网的计算机可以直接到达,访问非子网的计算机必须经过网关向外发送

实作三 掌握 ARP 解析过程

  1. 为防止干扰,先使用 arp -d 命令清空 arp 缓存
    在这里插入图片描述
    直接使用会失败,所以需要使用管理员身份运行
    在这里插入图片描述

  2. ping 你旁边的计算机(同一子网),同时用 Wireshark 抓这些包(可 arp 过滤),查看 ARP 请求的格式以及请求的内容,注意观察该请求的目的 MAC 地址是什么。再查看一下该请求的回应,注意观察该回应的源 MAC 和目的 MAC 地址是什么。
    在这里插入图片描述
    目的地址为旁边电脑的MAC地址
    在这里插入图片描述
    该请求的回应的源MAC是旁边电脑的MAC地址,目的MAC地址是本机的MAC地址

  3. 再次使用 arp -d * 命令清空 arp 缓存

  4. 然后 ping qige.io (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 arp 过滤)。查看这次 ARP 请求的是什么,注意观察该请求是谁在回应。在这里插入图片描述
    目的地址本机Mac地址,源地址为网关Mac地址

通过以上的实验,你应该会发现,
ARP 请求都是使用广播方式发送的
如果访问的是本子网的 IP,那么 ARP 解析将直接得到该 IP 对应的 MAC;如果访问的非本子网> 的 IP, 那么 ARP 解析将得到网关的 MAC。
请问为什么?
答:通过广播建立ARP表来得到对方的MAC地址。在同一子网内可以直接得到对方主机的Mac地址。访问外网时,通过广播,需用路由器进行转发消息,所以得到网关Mac地址。

网络层

实作一 熟悉 IP 包结构

使用 Wireshark 任意进行抓包(可用 ip 过滤),熟悉 IP 包的结构,如:版本、头部长度、总长度、TTL、协议类型等字段。
在这里插入图片描述

✎ 问题
为提高效率,我们应该让 IP 的头部尽可能的精简。但在如此珍贵的 IP 头部你会发现既有头部长度字段,也有总长度字段。请问为什么?
便于识别IP总长度,当长度超过1500B时就会被返回链路层进行分段。

实作二 IP 包的分段与重组

根据规定,一个 IP 包最大可以有 64K 字节。但由于 Ethernet 帧的限制,当 IP 包的数据超过 1500 字节时就会被发送方的数据链路层分段,然后在接收方的网络层重组。

缺省的,ping 命令只会向对方发送 32 个字节的数据。我们可以使用 ping 202.202.240.16 -l 2000 命令指定要发送的数据长度。此时使用 Wireshark 抓包(用 ip.addr == 202.202.240.16 进行过滤),了解 IP 包如何进行分段,如:分段标志、偏移量以及每个包的大小等
在这里插入图片描述
在这里插入图片描述
可以看到IP包被分成长度为1500和548的包

✎ 问题
分段与重组是一个耗费资源的操作,特别是当分段由传送路径上的节点即路由器来完成的时候,所以 IPv6 已经不允许分段了。那么 IPv6 中,如果路由器遇到了一个大数据包该怎么办?
答:可能会直接丢弃或转发到能支持该数据报的出链路上。

实作三 考察 TTL 事件

在 IP 包头中有一个 TTL 字段用来限定该包可以在 Internet上传输多少跳(hops),一般该值设置为 64、128等。

在验证性实验部分我们使用了 tracert 命令进行路由追踪。其原理是主动设置 IP 包的 TTL 值,从 1 开始逐渐增加,直至到达最终目的主机。

请使用 tracert www.baidu.com 命令进行追踪,此时使用 Wireshark 抓包(用 icmp 过滤),分析每个发送包的 TTL 是如何进行改变的,从而理解路由追踪原理。
在这里插入图片描述
在这里插入图片描述
TTL从1开始,逐渐增大,直到确定路由。

传输层

实作一 熟悉 TCP 和 UDP 段结构

  1. 用 Wireshark 任意抓包(可用 tcp 过滤),熟悉 TCP 段的结构,如:源端口、目的端口、序列号、确认号、各种标志位等字段。
    在这里插入图片描述
    在这里插入图片描述

  2. 用 Wireshark 任意抓包(可用 udp 过滤),熟悉 UDP 段的结构,如:源端口、目的端口、长度等。
    在这里插入图片描述

✎ 问题
由上大家可以看到 UDP 的头部比 TCP 简单得多,但两者都有源和目的端口号。请问源和目的端口号用来干什么?
对应进程,用来标识对应端口的进程。

实作二 分析 TCP 建立和释放连接

  1. 打开浏览器访问 qige.io 网站,用 Wireshark 抓包(可用 tcp 过滤后再使用加上 Follow TCP Stream),不要立即停止 Wireshark 捕获,待页面显示完毕后再多等一段时间使得能够捕获释放连接的包。

  2. 请在你捕获的包中找到三次握手建立连接的包,并说明为何它们是用于建立连接的,有什么特征。
    在这里插入图片描述
    1.主机向服务器80端口发送一个syn标志位(sep=0)
    2.服务端返回一个ACK=1的包给主机(sep=0,ack=1)
    3.主机再一次向服务器发送一个包(sep=1,ack=1)

  3. 请在你捕获的包中找到四次挥手释放连接的包,并说明为何它们是用于释放连接的,有什么特征。
    在这里插入图片描述

✎ 问题一
去掉 Follow TCP Stream,即不跟踪一个 TCP 流,你可能会看到访问 qige.io 时我们建立的连接有多个。请思考为什么会有多个连接?作用是什么?
答:一个域名可能有多个IP地址,多个IP进行连接可以时连接更稳定。

✎ 问题二
我们上面提到了释放连接需要四次挥手,有时你可能会抓到只有三次挥手。原因是什么?
答:可能将某次回复和中断的请求放在了一个包里

应用层

实作一 了解 DNS 解析

  1. 先使用 ipconfig /flushdns 命令清除缓存,再使用 nslookup qige.io 命令进行解析,同时用 Wireshark 任意抓包(可用 dns 过滤)。
    在这里插入图片描述
    在这里插入图片描述

  2. 你应该可以看到当前计算机使用 UDP,向默认的 DNS 服务器的 53 号端口发出了查询请求,而 DNS 服务器的 53 号端口返回了结果。
    在这里插入图片描述

  3. 可了解一下 DNS 查询和应答的相关字段的含义

  • QR:查询/应答标志。0表示这是一个查询报文,1表示这是一个应答报文
    opcode,定义查询和应答的类型。0表示标准查询,1表示反向查询(由IP地址获得主机域名),2表示请求服务器状态
  • AA,授权应答标志,仅由应答报文使用。1表示域名服务器是授权服务器
  • TC,截断标志,仅当DNS报文使用UDP服务时使用。因为UDP数据报有长度限制,所以过长的DNS报文将被截断。1表示DNS报文超过512字节,并被截断
  • RD,递归查询标志。1表示执行递归查询,即如果目标DNS服务器无法解析某个主机名,则它将向其他DNS服务器继续查询,如此递归,直到获得结果并把该结果返回给客户端。0表示执行迭代查询,即如果目标DNS服务器无法解析某个主机名,则它将自己知道的其他DNS服务器的IP地址返回给客户端,以供客户端参考
  • RA,允许递归标志。仅由应答报文使用,1表示DNS服务器支持递归查询
  • zero,这3位未用,必须设置为0
  • rcode,4位返回码,表示应答的状态。常用值有0(无错误)和3(域名不存在)

✎ 问题
你可能会发现对同一个站点,我们发出的 DNS 解析请求不止一个,思考一下是什么原因?
使服务器的负载得到平衡

实作二 了解 HTTP 的请求和应答

  1. 打开浏览器访问 qige.io 网站,用 Wireshark 抓包(可用http 过滤再加上 Follow TCP Stream),不要立即停止 Wireshark 捕获,待页面显示完毕后再多等一段时间以将释放连接的包捕获。
    在这里插入图片描述

  2. 请在你捕获的包中找到 HTTP 请求包,查看请求使用的什么命令,如:GET, POST。并仔细了解请求的头部有哪些字段及其意义。
    在这里插入图片描述
    用了GET和HOST命令

  3. 请在你捕获的包中找到 HTTP 应答包,查看应答的代码是什么,如:200, 304, 404 等。并仔细了解应答的头部有哪些字段及其意义。
    在这里插入图片描述
    应答代码为400

✎ 问题
刷新一次 qige.io 网站的页面同时进行抓包,你会发现不少的 304 代码的应答,这是所请求的对象没有更改的意思,让浏览器使用本地缓存的内容即可。那么服务器为什么会回答 304 应答而不是常见的 200 应答?
答;网页刷新时,若本地缓存没有改变,则应答304,说明服务器不用回传文件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值