“凸优化基础”相关理论知识

本文深入探讨了计算几何、凸集、凸函数、凸规划等凸优化基础概念,讲解了直线、平面、超平面的表达方式,以及如何判断函数是否为凸函数。并通过实例解析了凸规划的判别方法。

1、计算几何是研究什么的?

计算几何研究的对象是几何图形。早期人们对于图像的研究一般都是先建立坐标系,把图形转换成函数,然后用插值和逼近的数学方法,特别是用样条函数作为工具来分析图形,取得了可喜的成功。然而,这些方法过多地依赖于坐标系的选取,缺乏几何不变性,特别是用来解决某些大挠度曲线及曲线的奇异点等问题时,有一定的局限性。

2、计算几何理论中(或凸集中)过两点的一条直线的表达式,是如何描述的?与初中数学中那些直线方程有什么差异?有什么好处?

(1)过两点的一条直线的表达式的描述
假设两个点不相同:x1、x2,那么就有直线方程:y=θx1+(1−θ)x2
(2)计算几何初中数学中那些直线方程有什么差异,有什么好处?
计算几何与平面几何(初高中学习)的区别就是维度的不一样,计算几何在平面的基础上添加了角度的维度,这意味着计算的复杂性提高了,但是计算的结果更加的广泛,更加的精确,更容易全方位的表达一条直线。

3、凸集是什么? 直线是凸集吗?是仿射集吗?

(1)凸集定义
在凸几何中,凸集(convex set)是在凸组合下闭合的仿射空间的子集。更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内。例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集。特别的,凸集,实数R上(或复数C上)的向量空间中,如果集合S中任两点的连线上的点都在S内,则称集合S为凸集。常见的凸集:单点集 ,空集,整个欧氏空间 Rn。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值