使用Python编程,分别根据梯度法和最小二乘法求解多元函数问题
分别使用梯度下降法和最小二乘法求解多元函数并进行比较,这里使用jupyter notebook平台进行Python编程
一、题目描述
为求得某个地区的商品店的月营业额与店铺的面积、该店距离车站距离的相关性大小,以店铺面积、距离车站的距离、以及月营业额建立线性回归方程,并求解方程,得到相关系数。

将表中的数据录入到Excel中,编程时会用到这些数据,如下:

二、使用梯度下降法求解多元函数
(一)梯度下降法基本原理
梯度下降法又称最速下降法,是求解无约束最优化问题的一种最常用的方法,在对损失函数最小化时经常使用。梯度下降法是一种迭代算法。选取适当的初值x(0),不断迭代,更新x的值,进行目标函数的极小化,直到收敛。由于负梯度方向时使函数值下降最快的方向,在迭代的每一步,以负梯度方向更新x的值,从而达到减少函数值的目的。
(二)梯度下降法公式

(三)Python代码实现
1、导入要使用到的库、定义变量并赋值
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
data=np.genfromtxt('D:/area_distance.csv',delimiter=',')
x_data=data[:,:-1]
y_data=data[:,2]
#定义学习率、斜率、截据
#设方程为y=theta1x1+theta2x2+theta0
lr=0.00001
theta0=0
theta1=0
theta2=0
#定义最大迭代次数,因为梯度下降法是在不断迭代更新k与b
epochs=10000
2、代价函数
def compute_error(theta0,theta1,theta2,x_data,y_data):
totalerror=0
for i in range(0,len(x_data)):#定义一共有多少样本点
totalerror=totalerror+(y_data[i]-(theta1*x_data[i,0]+theta2*x_data[i,1]+theta0))**2
return totalerror/float(len(x_data))/2
3、使用梯度下降法求解多元函数系数
def gradient_descent_runner(x_data,y_data,theta0,theta1,theta2,lr,epochs):
m=len(x_data)
for i in range(epochs):
theta0_grad=0
theta1_grad=0
theta2_grad=0
for j in range(0,m):
theta0_grad-=(1/m)*(-(theta1*x_data[j,0]+theta2*x_data[j,1]+theta2)+y_data[j])
theta1_grad-=(1/m)*x_data[j,0]*(-(theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)+y_data[j])
theta2_grad-=(1/m)*x_data[j,1]*(-(theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)+y_data[j])
theta0=theta0-lr*theta0_grad
theta1=theta1-lr*theta1_grad
theta2=theta2-lr*theta2_grad
return theta0,theta1,theta2
4、打印系数和方程
theta0,theta1,theta2=gradient_descent_runner(x_data,y_data,theta0,theta1,theta2,lr,epochs)
print('迭代次数:{0} 学习率:{1}之后 a0={2},a1={3},a2={4},代价函数为{5}'.format(epochs,lr,theta0,theta1,theta2,compute_error(theta0,theta1,theta2,x_data,y_data)))
print("多元线性回归方程为:y=",theta1

本文通过梯度下降法和最小二乘法求解多元函数问题,对比两种方法在求解线性回归方程中的表现,包括计算量、效率及稳定性。
最低0.47元/天 解锁文章
1932

被折叠的 条评论
为什么被折叠?



