import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import warnings;warnings.filterwarnings(action='once')
%%cmd
pip install pywaffle
from pywaffle import Waffle
data = {'Democtatic':48,'Republican':46,'Libertarian':3}
fig = plt.figure(figsize=(8,3),
FigureClass=Waffle, #画布类型
rows=5,
icons = 'child',
icon_size = 20,
values=data,
colors=("#232066","#983d3d","#dcb732"),
legend={'loc':'upper right', #控制图例在的位置,左上角,左下角,右上角,右下角
'bbox_to_anchor':(1.5,1)}#当存在这个元组是,图例的位置是相对于这个点来定位的
)
df = pd.read_csv("C:/Users/GYX/Desktop/mpg_ggplot2.csv")
df.groupby("class").size().reset_index()
df_class = df.groupby("class").size().reset_index(name="counts")
n_categories = df_class.shape[0]
#获取颜色
colors = [plt.cm.inferno_r(i/float(n_categories)) for i in range (n_categories)]
#plt.cm.inferno_r()函数中输入任意一个小数,几个可到邮给颜色
cla = [n[1] for n in df_class[["class","counts"]].itertuples()]
df = pd.read_csv("C:/Users/GYX/Desktop/mpg_ggplot2.csv")
#按车辆类型
df_class = df.groupby('class').size().reset_index(name='class_counts')
n_categories = df_class.shape[0]
#colors_class = [plt.cm.Set3(i/float(n_categories)) for i in range(n_categories)]
colors_class = [plt.cm.nipy_spectral(i/float(n_categories)) for i in range(n_categories)] ## plt.cm.nipy_spectral()里的颜色都比较深
label_class = [n[1] for n in df_class[['class','class_counts']].itertuples()]
#按气缸数
df_cyl = df.groupby('cyl').size().reset_index(name='cyl_counts')
n_categories = df_cyl.shape[0]
#colors_cyl = [plt.cm.Spectral(i/float(n_categories)) for i in range(n_categories)]
colors_cyl = [plt.cm.nipy_spectral(i/float(n_categories)) for i in range(n_categories)]
label_cyl = [n[1] for n in df_cyl[['cyl','cyl_counts']].itertuples()]
fig = plt.figure(
FigureClass = Waffle,#绘制华夫饼
plots={ #绘制多个图像
'211': #3 表示3行,1 表示1列, 1 表示这是第一个
{
'values':df_class['class_counts'],#数据集
'labels':label_class,
'legend':{'loc':'upper left','bbox_to_anchor':(1.05,1),'fontsize':14,'title':'class'},
'colors':colors_class,
'title':{'label':"#vehicles by class",'loc':'center','fontsize':18}
},
'212':
{
'values':df_cyl['cyl_counts'],
'labels':label_cyl,
'legend':{'loc':'upper left','bbox_to_anchor':(1.05,1),'fontsize':14,'title':'cyl'},#这里的title是图例的title
'colors':colors_cyl,
'title':{'label':"#vehicles by cyl",'loc':'center','fontsize':18}
},
},
rows = 6,
figsize = (16,14),
icons = 'car',
icon_size=25,
)
组成图
最新推荐文章于 2023-05-13 10:37:23 发布