引言
直方图均衡化(Histogram Equalization)是一种非线性拉伸,通常增加图像的局部对比度,提高图片利用率,说白了就是将一副图像的直方图分布变成近似均匀分布,从而增强图像的对比度。
一、python
以下图为例:
直方图代码:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('test.jpg',0)
plt.hist(img.ravel(),255,[0,256]);
plt.title("Matplotlib Method")
plt.show()
其直方图为:
直方图均衡化代码:
import cv2 # 仅用于读取图像矩阵
import matplotlib.pyplot as plt
import numpy as np
gray_level = 256 # 灰度级
def pixel_probability(img):
"""
计算像素值出现概率
:param img:
:return:
"""
assert isinstance(img, np.ndarray)
prob = np.zeros(shape=(256))
for rv in img:
for cv in rv:
prob[cv] += 1
r, c = img.shape
prob = prob / (r * c)
return prob
def probability_to_histogram(img, prob):
"""
根据像素概率将原始图像直方图均衡化
:param img:
:param prob:
:return: 直方图均衡化后的图像
"""
prob = np.cumsum(prob) # 累计概率
img_map = [int(i * prob[i]) for i in range(256)] # 像素值映射
# 像素值替换
assert isinstance(img, np.ndarray)
r, c = img.shape
for ri in range(r):
for ci in range(c):
img[ri, ci] = img_map[img[ri, ci]]
return img
def plot(y, name):
"""
画直方图,len(y)==gray_level
:param y: 概率值
:param name:
:return:
"""
plt.figure(num=name)
plt.bar([i for i in range(gray_level)], y, width=1)
if __name__ == '__main__':
img = cv2.imread("test.jpg", 0) # 读取灰度图
prob = pixel_probability(img)
plot(prob, "原图直方图")
# 直方图均衡化
img = probability_to_histogram(img, prob)
cv2.imwrite("test2.jpg", img) # 保存图像
prob = pixel_probability(img)
plot(prob, "直方图均衡化结果")
plt.show()
直方图均衡化后的原图:
直方图均衡化后的直方图:
二、matlab
I = imread('test.jpg'); %将图像读入工作区
figure
subplot(1,2,1)
imshow(I)
subplot(1,2,2)
imhist(I,64)%显示图像及其直方图
J = histeq(I);%使用直方图均衡化调整对比度
figure
subplot(1,2,1)
imshow(J)
subplot(1,2,2)
imhist(J,64)%显示对比度调整后的图像及其新直方图
公式:
参考资料:
https://blog.youkuaiyun.com/weixin_43746235/article/details/90731090
https://blog.youkuaiyun.com/nima1994/article/details/85322473