大数据 ETL + Flume 数据清洗 — 详细教程及实例
在大数据生态中,ETL(Extract, Transform, Load)是处理和清洗数据的核心过程。Flume 是一个分布式的、可靠的流数据收集工具,常用于将日志和流数据导入到 Hadoop、HDFS、Kafka 或其他数据存储系统。本文将结合 Flume 的使用、数据清洗、ETL 流程以及 常见问题和解决方案,为您提供完整的技术指南。
1. ETL 和 Flume 概述
1.1 ETL(Extract, Transform, Load)
ETL 是从各种数据源中提取数据(Extract)、对数据进行清洗和转换(Transform),最后将数据加载到目标存储系统(Load)的过程。ETL 过程是大数据架构中至关重要的一部分,常用于处理不同格式的原始数据,将其转化为有价值的数据。
- Extract(提取):从数据源中提取原始数据,支持多种数据源,如文件、数据库、流数据等。
- Transform(