Gradient and Directional Derivatives--How CNN Learn

在阅读这篇文章之前,先阅读这一篇文章:
Partial Derivatives and Vector Fields

1. Gradient


The gradient of a scalar-valued multivariable function f ( x , y , …   ) f(x, y, \dots) f(x,y,), denoted ∇ f \nabla{f} f, packages all its partial derivative information into a vector:
∇ f = [ ∂ f ∂ x ∂ f ∂ y … ] \nabla{f}=\begin{bmatrix} \\\frac{\partial f}{\partial x} \\ \\\frac{\partial f}{\partial y} \\\dots \end{bmatrix} f=xfyf

In particular, this means ∇ f \nabla {f} f, f f f is a vector-valued function.

  • If you imagine standing at a point ( x 0 , y 0 , …   ) (x_{0}, y_{0}, \dots) (x0,y0,) in the input space of f f f, the vector ∇ f \nabla f f tells you which direction you should travel to increase the value of f f f most rapidly.

  • These gradient vectors ∇ f \nabla f f are also perpendicular to the Contour lines of f f f.

In the case of scalar-valued multivariable functions, those with a multidimensional input but a one-dimensional output, the full derivative of such a function is the gradient.

Credit To: The gradient

2. Directional Derivatives


Consider some multivariable function:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值