Resolve build errors due to circular dependency amongst classes

在C++项目中,由于不良的设计决策(可能是别人做的),经常会出现类之间的循环依赖,导致编译或链接错误。解决这个问题需要理解编译器的工作原理。通过将引用替换为指针,或者使用前向声明,可以打破这种循环依赖。然而,这样的解决方案可能会导致其他问题,比如头文件包含顺序错误。理想的解决办法是重构代码,避免循环依赖。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

I often find myself in a situation where I am facing multiple compilation/linker errors in a C++ project due to some bad design decisions (made by someone else :) ) which lead to circular dependencies between C++ classes in different header files (can happen also in the same file). But fortunately(?) this doesn't happen often enough for me to remember the solution to this problem for the next time it happens again.

So for the purposes of easy recall in the future I am going to post a representative problem and a solution along with it. Better solutions are of-course welcome


  • A.h

    class B;
    class A
    {
        int _val;
        B *_b;
    public:
    
        A(int val)
            :_val(val)
        {
        }
    
        void SetB(B *b)
        {
            _b = b;
            _b->Print(); // COMPILER ERROR: C2027: use of undefined type 'B'
        }
    
        void Print()
        {
            cout<<"Type:A val="<<_val<<endl;
        }
    };
    

  • B.h

    #include "A.h"
    class B
    {
        double _val;
        A* _a;
    public:
    
        B(double val)
            :_val(val)
        {
        }
    
        void SetA(A *a)
        {
            _a = a;
            _a->Print();
        }
    
        void Print()
        {
            cout<<"Type:B val="<<_val<<endl;
        }
    };
    

  • main.cpp

    #include "B.h"
    #include <iostream>
    
    int main(int argc, char* argv[])
    {
        A a(10);
        B b(3.14);
        a.Print();
        a.SetB(&b);
        b.Print();
        b.SetA(&a);
        return 0;
    }
    

 


The way to think about this is to "think like a compiler".

Imagine you are writing a compiler. And you see code like this.

// file: A.h
class A {
  B _b;
};

// file: B.h
class B {
  A _a;
};

// file main.cc
#include "A.h"
#include "B.h"
int main(...) {
  A a;
}

When you are compiling the .cc file (remember that the .cc and not the .h is the unit of compilation), you need to allocate space for object A. So, well, how much space then? Enough to store B! What's the size of B then? Enough to store A! Oops.

Clearly a circular reference that you must break.

You can break it by allowing the compiler to instead reserve as much space as it knows about upfront - pointers and references, for example, will always be 32 or 64 bits (depending on the architecture) and so if you replaced (either one) by a pointer or reference, things would be great. Let's say we replace in A:

// file: A.h
class A {
  // both these are fine, so are various const versions of the same.
  B& _b_ref;
  B* _b_ptr;
};

Now things are better. Somewhat. main() still says:

// file: main.cc
#include "A.h"  // <-- Houston, we have a problem

#include, for all extents and purposes (if you take the preprocessor out) just copies the file into the .cc. So really, the .cc looks like:

// file: partially_pre_processed_main.cc
class A {
  B& _b_ref;
  B* _b_ptr;
};
#include "B.h"
int main (...) {
  A a;
}

You can see why the compiler can't deal with this - it has no idea what B is - it has never even seen the symbol before.

So let's tell the compiler about B. This is known as a forward declaration, and is discussed further in this answer.

// main.cc
class B;
#include "A.h"
#include "B.h"
int main (...) {
  A a;
}

This works. It is not great. But at this point you should have an understanding of the circular reference problem and what we did to "fix" it, albeit the fix is bad.

The reason this fix is bad is because the next person to #include "A.h" will have to declare B before they can use it and will get a terrible #include error. So let's move the declaration into A.h itself.

// file: A.h
class B;
class A {
  B* _b; // or any of the other variants.
};

And in B.h, at this point, you can just #include "A.h" directly.

// file: B.h
#include "A.h"
class B {
  // note that this is cool because the compiler knows by this time
  // how much space A will need.
  A _a; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值