transformer 原论文 Attention is all you need 阅读笔记
建议结合原文食用
Reference:
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
圈圈 2022/3/12 初稿 结合代码介绍了模型
以下为正文↓
Attention Is All You Need
Transformer
model architecture
( x 1 , . . . , x n ) → e n c o d e r ( z 1 , . . . , z n ) → d e c o d e r ( y 1 , . . . , y m ) (x_1,...,x_n)\xrightarrow{encoder} (z_1,...,z_n)\xrightarrow{decoder} (y_1,...,y_m) (x1,...,xn)encoder(z1,...,zn)decoder(y1,...,ym)
encoder and decoder stacks
encoder
composed of a stack of N = 6 N=6 N=6 identical layers, each layer has two sub-layers
-
multi-head self-attention mechanism x → S ( x ) x\to S(x) x→S(x)
residue connection followed by layer normalization
x → L a y e r n o r m ( x + S ( x ) ) x\to Layernorm(x+S(x)) x→Layernorm(x+S(x)) -
simple position-wise fully connected feed-forward network +
same residue connection followed by layer normalization
To facilitate these residual connections, all sub-layers in the model, as well as the embedding layers, produce outputs of dimension d m o d e l = 512 d_{model}=512 dmodel=512
## code author: "Yu-Hsiang Huang", https://github.com/jadore801120/attention-is-all-you-need-pytorch
class EncoderLayer(nn.Module):
''' Compose with two layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
super(EncoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
def forward(self, enc_input, slf_attn_mask=None):
enc_output, enc_slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
enc_output = self.pos_ffn(enc_output)
return enc_output, enc_slf_attn
decoder
also composed of a stack of N = 6 N=6 N=6 identical layers, but has three sub-layers each
the decoder inserts a third sub-layer, which performs multi-head attention over the output of the encoder stack.
class DecoderLayer(nn.Module):
''' Compose with three layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
super(DecoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.enc_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
def forward(
self, dec_input, enc_output,
slf_attn_mask=None, dec_enc_attn_mask=None):
dec_output, dec_slf_attn = self.slf_attn(
dec_input, dec_input, dec_input, mask=slf_attn_mask)
dec_output, dec_enc_attn = self.enc_attn(
dec_output, enc_output, enc_output, mask=dec_enc_attn_mask)
dec_output = self.pos_ffn(dec_output)
return dec_output, dec_slf_attn, dec_enc_attn
attention
An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.
scaled dot-product attention
- Q : packed queries query dim : d k d_k dk
- K : packed keys key dim : d k d_k dk
- V : packed values value dim : d v d_v dv
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V)=softmax(\dfrac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dkQKT)V
reason for scaling the dot products by 1 d k \frac{1}{\sqrt{d_k}} dk1:
While for small values of dk the two mechanisms perform similarly, additive attention outperforms dot product attention without scaling for larger values of d k d_k dk. We suspect that for large values of d k d_k dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients.
multi-head attention
several attention layers in parallel + projection
M
u
l
t
i
H
e
a
d
(
Q
,
K
,
V
)
=
C
o
n
c
a
t
(
h
e
a
d
1
,
.
.
.
,
h
e
a
d
h
)
W
O
w
h
e
r
e
h
e
a
d
i
=
A
t
t
e
n
t
i
o
n
(
Q
W
i
Q
,
K
W
i
K
,
V
W
i
V
)
p
r
o
j
e
c
t
i
o
n
m
a
t
r
i
c
e
s
:
W
i
Q
∈
R
d
m
o
d
e
l
×
d
k
,
W
i
K
∈
R
d
m
o
d
e
l
×
d
k
,
W
i
V
∈
R
d
m
o
d
e
l
×
d
v
,
W
O
∈
R
h
d
v
×
d
m
o
d
e
l
MultiHead(Q,K,V)=Concat(head_1,...,head_h)W^O \\ where\ head_i=Attention(QW^Q_i,KW^K_i,VW^V_i)\\ projection\ matrices:\ W^Q_i\in\mathbb R^{d_{model}\times d_k},\\ \ W^K_i\in\mathbb R^{d_{model}\times d_k},\ W^V_i\in\mathbb R^{d_{model}\times d_v},\ W^O\in\mathbb R^{hd_v\times d_{model}}
MultiHead(Q,K,V)=Concat(head1,...,headh)WOwhere headi=Attention(QWiQ,KWiK,VWiV)projection matrices: WiQ∈Rdmodel×dk, WiK∈Rdmodel×dk, WiV∈Rdmodel×dv, WO∈Rhdv×dmodel
position-wise feed-forward networks
F F N ( x ) = R e L U ( x W 1 + b 1 ) W 2 + b 2 FFN(x)=ReLU(xW_1+b_1)W_2+b_2 FFN(x)=ReLU(xW1+b1)W2+b2
2 full-connect layers
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
x = self.w_2(F.relu(self.w_1(x)))
embeddings and softmax
share the same weight matrix between the two embedding layers and the pre-softmax linear transformation
self.trg_word_prj = nn.Linear(d_model, n_trg_vocab, bias=False)
seq_logit = self.trg_word_prj(dec_output)
if self.scale_prj:
seq_logit *= self.d_model ** -0.5
softmax → \to → probability
positional encoding
Since our model contains no recurrence and no convolution, in order for the model to make use of the order of the sequence, we must inject some information about the relative or absolute position of the tokens in the sequence.
P E ( p o s , 2 i ) = sin ( p o s / 1000 0 2 i / d m o d e l ) P E ( p o s , 2 i + 1 ) = cos ( p o s / 1000 0 2 i / d m o d e l ) PE_{(pos,2i)}=\sin(pos/10000^{2i/d_{model}})\\ PE_{(pos,2i+1)}=\cos(pos/10000^{2i/d_{model}}) PE(pos,2i)=sin(pos/100002i/dmodel)PE(pos,2i+1)=cos(pos/100002i/dmodel)
sinusoidal version, of course can use other version
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions
why self-attention?
- total computational complexity per layer
- the amount of computation that can
be parallelized - the path length between long-range dependencies in the network
As side benefit, self-attention could yield more interpretable models.