3.预测房价--回归问题
下面展示一些 内联代码片
。
"""
预测房价--回归问题
"""
# 1.价值波士顿房价数据
from keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data() # 切分数据
print(train_data.shape) # 2D连续型数据(404, 13)
print(test_data.shape)
print(train_data.shape[1]) # 特征数量13
print(train_targets.shape)
# 2.准备数据:数据标准化(对特征)
mean = train_data.mean(axis=0) # 平均值 0代表列的计算,1代表行的计算
train_data -= mean
std = train_data.std(axis=0) # 标准差
train_data /= std # 标准化
test_data -=mean # 用于测试数据标准化的均值和标准差都是在训练数据上计算到的
test_data /=std
# 3.构建网络:定义模型
from keras import models
from keras import layers
def build_model():
model = models.Sequential() # 因为需要将同一个模型多次实例化,所以用一个函数来构建模型
model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1)) # 无激活函数,标量回归的典型设置
model.compile(optimizer='rmsprop', # 优化器rmsprop
loss='mse', # mse损失函数(均方误差)MSE
metrics=['mae']) # 指标:平均绝对误差MAE
return model
model.summary()
# 4.K折交叉验证
import numpy as np
k = 4
num_val_samples = len(train_data) // k # 浮点数 num_val_samples是1/4的数据长度
num_epochs = 100
all_scores = [] # 记录平均绝对误差MAE
for i in range(k):
print('processing fold #', i) # 准备验证数据,第k个分区的数据
val_data = train_data[i * num_val_samples : (i+1) * num_val_samples] # 验证数据
val_targets = train_targets[i * num_val_samples : (i+1) * num_val_samples] # 验证标签
partial_train_data = np.concatenate( # 准备训练数据:其他所有分区的数据 将数据连接起来
[train_data[ : i * num_val_samples],
train_data[(i+1) * num_val_samples : ]],
axis=0)
partial_train_targets = np.concatenate( # 准备训练标签:其他所有分区的标签
[train_targets[ : i * num_val_samples],
train_targets[(i+1) * num_val_samples : ]],
axis=0)
model = build_model() # 构建Keras模型(已编译)
model.fit(partial_train_data,
partial_train_targets,
epochs = num_epochs,
batch_size = 1,
verbose = 0) # 训练模型(静默模式,verbose=0)
# model.evaluate:在验证数据上评估模型
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
all_scores.append(val_mae) # 记录平均绝对误差MAE
print('第%i次平均绝对误差MAE:', all_scores[i])
print('4次平均绝对误差MAE的平均值:', np.mean(all_scores)) # 4次平均绝对误差MAE的平均值
# 5.保存每折的验证结果
num_epochs = 500
all_mae_histories = [] # 指标:平均绝对误差MAE
for i in range(k):
print('processing fold #', i)
val_data = train_data[i * num_val_samples : (i+1) * num_val_samples] # 验证数据
val_targets = train_targets[i * num_val_samples : (i+1) * num_val_samples] # 验证标签
partial_train_data = np.concatenate( # 准备训练数据:其他所有分区的数据
[train_data[ : i * num_val_samples],
train_data[(i+1) * num_val_samples : ]],
axis=0)
partial_train_targets = np.concatenate( # 准备训练标签:其他所有分区的标签
[train_targets[ : i * num_val_samples],
train_targets[(i+1) * num_val_samples : ]],
axis=0)
model = build_model()
History = model.fit(partial_train_data,
partial_train_targets,
validation_data = (val_data, val_targets), # 将验证集传入validation_data()来完成验证
epochs = num_epochs,
batch_size = 1,
verbose = 0)
mae_history = History.history['val_mae'] # 记录平均绝对误差MAE(val_mean_absolute_error)
# mae_history = History.history['val_mean_absolute_error'] # 错误:KeyError: 'val_mean_absolute_error'
all_mae_histories.append(mae_history)
print('500次平均绝对误差MAE:', np.mean(all_mae_histories)) # 500次平均绝对误差MAE
print(History.history.keys()) # dict_keys(['val_loss', 'val_mae', 'loss', 'mae'])
# 6.计算所有轮次中的K折验证分数平均值
average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
# 7.绘制验证分数
import matplotlib.pyplot as plt
plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
# 8.绘制验证分数(删除前10个数据点)
def smooth_curve(points, factor=0.9):
smoothed_points = []
for point in points:
if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))
else:
smoothed_points.append(point)
return smoothed_points # 指数移动平均值
smooth_mae_history = smooth_curve(average_mae_history[10:]) # 500删除前10
plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
# 9.训练最终模型
model = build_model()
model.fit(train_data,
train_targets,
epochs=80,
batch_size=16,
verbose=0)
# model.evaluate:在验证数据上评估模型
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
print('(均方误差)MSE:',test_mse_score) # mse损失函数(均方误差)MSE
print('平均绝对误差MAE', test_mae_score) # 指标:平均绝对误差MAE
代码运行结果:无