root MUSIC 算法补充说明
这篇笔记是上一篇关于 root MUSIC 笔记的补充。
多项式求根
要理解 root MUSIC 算法,需要理解多项式求根的相关知识。给定多项式 P ( x ) P(x) P(x):
P ( x ) = a 0 + a 1 x + ⋯ + a n x n P(x) = a_0 + a_1 x + \cdots + a_n x^n P(x)=a0+a1x+⋯+anxn
容易看出 P ( x ) P(x) P(x) 中只有一个未知数 x x x,且未知数的最高次数为 n n n,因此称 P ( x ) P(x) P(x) 为一元 n n n 次多项式,同时系数 { a i ∈ C : i = 0 , ⋯ , n } \{a_i\in\mathbb{C}:i = 0,\cdots, n\} {
ai∈C:i=0,⋯,n}。而多项式求根就是求得一元 n n n 次方程式 P ( x ) = 0 P(x)=0 P(x)=0 的解,这个解被称作根或者零点。
在进行后续的讨论前,还需要清楚,根据代数基本定理, n n n 次复系数多项式方程在复数域内有且只有 n n n 个根(这里的重根按重数计算)。
root MUSIC 算法原理
root MUSIC 算法是 MUSIC 算法的一种多项式求根形式。回忆一下,传统 MUSIC 算法利用了噪声子空间矩阵 U n \mathbf{U}_n Un 和搜索方向矢量 a ( θ ) \mathbf{a}(\theta) a(θ) 来构造空间谱:
P ( θ ) = 1 a H ( θ ) U n U n H a ( θ ) a ( θ ) = [ 1 , e − j 2 π d sin θ / λ , ⋯ , e − j 2 π ( M − 1 ) d sin θ / λ ] T P(\theta) = \frac{1}{\mathbf{a}^H(\theta)\mathbf{U}_n\mathbf{U}^H_n\mathbf{a}(\theta)} \\ \mathbf{a}(\theta) = \left[1,e^{-\mathrm{j}2\pi d \sin \theta/\lambda},\cdots,e^{-\mathrm{j}2\pi(M-1) d \sin \theta/\lambda}\right]^T P(θ)=aH(θ)UnUnHa(θ)1a(θ)=[1,e−j2πdsinθ/λ,⋯,e−j2π(M−1)dsinθ/λ]T
在 { θ = θ k : k = 1 , ⋯ , K } \{\theta = \theta_k:k = 1,\cdots,K\} {
θ=θk:k=1,⋯,K} 时 P ( θ ) P(\theta) P(θ) 将产生峰值,换句话说此时 P − 1 ( θ ) = 0 P^{-1}(\theta)=0 P−1(θ)=0。
在接下来的讨论中,我们令 P − 1 ( θ ) = a H ( θ ) G a ( θ ) P^{-1}(\theta) = \mathbf{a}^H(\theta)\mathbf{G}\mathbf{a}(\theta) P−1(θ)=aH(θ)Ga(θ),此时我们可以知道,MUSIC 算法满足 G ≜ U n U n H \mathbf{G} \triangleq \mathbf{U}_n\mathbf{U}^H_n G≜UnUnH,而 Capon 算法满足 G ≜ R − 1 \mathbf{G} \triangleq \mathbf{R}^{-1} G≜R−1。需要注意的是无论是 MUSIC 算法还是 Capon 算法, G \mathbf{G} G 均是 Hermitian 矩阵。
令 ω = − 2 π d sin θ / λ \omega = -2\pi d \sin\theta/\lambda ω=−2πdsinθ/λ 以及 z = e j ω z = e^{\mathrm{j}\omega} z=ejω,我们将会得到:
a ( z ) = [ 1 , z , z 2 , ⋯ , z M − 1 ] T = a ( θ ) P − 1 ( z ) = a H ( z ) G a ( z ) = P − 1 ( θ ) \begin{aligned} \mathbf{a}(z) &= [1,z,z^{2},\cdots,z^{M-1}]^T = \mathbf{a}(\theta) \\ P^{-1}(z) &= \mathbf{a}^H(z)\mathbf{G}\mathbf{a}(z) = P^{-1}(\theta) \end{aligned} a(z)P−1(z)