第九章 动态规划part11
1143.最长公共子序列
体会一下本题和 718. 最长重复子数组 的区别
视频讲解:https://www.bilibili.com/video/BV1ye4y1L7CQ
/*
二维dp数组
*/
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
// char[] char1 = text1.toCharArray();
// char[] char2 = text2.toCharArray();
// 可以在一開始的時候就先把text1, text2 轉成char[],之後就不需要有這麼多爲了處理字串的調整
// 就可以和卡哥的code更一致
int[][] dp = new int[text1.length() + 1][text2.length() + 1]; // 先对dp数组做初始化操作
for (int i = 1 ; i <= text1.length() ; i++) {
char char1 = text1.charAt(i - 1);
for (int j = 1; j <= text2.length(); j++) {
char char2 = text2.charAt(j - 1);
if (char1 == char2) { // 开始列出状态转移方程
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[text1.length()][text2.length()];
}
}
/**
一维dp数组
*/
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int n1 = text1.length();
int n2 = text2.length();
// 多从二维dp数组过程分析
// 关键在于 如果记录 dp[i - 1][j - 1]
// 因为 dp[i - 1][j - 1] <!=> dp[j - 1] <=> dp[i][j - 1]
int [] dp = new int[n2 + 1];
for(int i = 1; i <= n1; i++){
// 这里pre相当于 dp[i - 1][j - 1]
int pre = dp[0];
for(int j = 1; j <= n2; j++){
//用于给pre赋值
int cur = dp[j];
if(text1.charAt(i - 1) == text2.charAt(j - 1)){
//这里pre相当于dp[i - 1][j - 1] 千万不能用dp[j - 1] !!
dp[j] = pre + 1;
} else{
// dp[j] 相当于 dp[i - 1][j]
// dp[j - 1] 相当于 dp[i][j - 1]
dp[j] = Math.max(dp[j], dp[j - 1]);
}
//更新dp[i - 1][j - 1], 为下次使用做准备
pre = cur;
}
}
return dp[n2];
}
}
1035.不相交的线
其实本题和 1143.最长公共子序列 是一模一样的,大家尝试自己做一做。
视频讲解:https://www.bilibili.com/video/BV1h84y1x7MP
class Solution {
public int maxUncrossedLines(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 1; i <= len1; i++) {
for (int j = 1; j <= len2; j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[len1][len2];
}
}
53. 最大子序和
这道题我们用贪心做过,这次 再用dp来做一遍
视频讲解:https://www.bilibili.com/video/BV19V4y1F7b5
/**
* 1.dp[i]代表当前下标对应的最大值
* 2.递推公式 dp[i] = max (dp[i-1]+nums[i],nums[i]) res = max(res,dp[i])
* 3.初始化 都为 0
* 4.遍历方向,从前往后
* 5.举例推导结果。。。
*
* @param nums
* @return
*/
public static int maxSubArray(int[] nums) {
if (nums.length == 0) {
return 0;
}
int res = nums[0];
int[] dp = new int[nums.length];
dp[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
res = res > dp[i] ? res : dp[i];
}
return res;
}
//因为dp[i]的递推公式只与前一个值有关,所以可以用一个变量代替dp数组,空间复杂度为O(1)
class Solution {
public int maxSubArray(int[] nums) {
int res = nums[0];
int pre = nums[0];
for(int i = 1; i < nums.length; i++) {
pre = Math.max(pre + nums[i], nums[i]);
res = Math.max(res, pre);
}
return res;
}
}
392.判断子序列
这道题目算是 编辑距离问题 的入门题目(毕竟这里只是涉及到减法),慢慢的,后面就要来解决真正的 编辑距离问题了
class Solution {
public boolean isSubsequence(String s, String t) {
int length1 = s.length(); int length2 = t.length();
int[][] dp = new int[length1+1][length2+1];
for(int i = 1; i <= length1; i++){
for(int j = 1; j <= length2; j++){
if(s.charAt(i-1) == t.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + 1;
}else{
dp[i][j] = dp[i][j-1];
}
}
}
if(dp[length1][length2] == length1){
return true;
}else{
return false;
}
}
}