红外遥控
1 、 红外遥控简介
红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统中。
由于红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以,在设计红外线遥控器时,不必要像无线电遥控器那样,每套(发射器和接收器)要有不同的遥控频率或编码(否则,就会隔墙控制或干扰邻居的家用电器),所以同类产品的红外线遥控器,可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方面。由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。
红外遥控的编码目前广泛使用的是:NEC Protocol 的 PWM(脉冲宽度调制)和 PhilipsRC-5 Protocol 的 PPM(脉冲位置调制)。下面实例遥控器使用的是 NEC 协议,其特征如下:
1、8 位地址和 8 位指令长度;
2、地址和命令 2 次传输(确保可靠性)
3、PWM 脉冲位置调制,以发射红外载波的占空比代表“0”和“1”;
4、载波频率为 38Khz;
5、位时间为 1.125ms 或 2.25ms;
NEC 码的位定义:一个脉冲对应 560us 的连续载波,一个逻辑 1 传输需要 2.25ms(560us脉冲+1680us 低电平),一个逻辑 0 的传输需要 1.125ms(560us 脉冲+560us 低电平)。而遥控接收头在收到脉冲的时候为低电平,在没有脉冲的时候为高电平,这样,我们在接收头端收到的信号为:逻辑 1 应该是 560us 低+1680us 高,逻辑 0 应该是 560us 低+560us 高。
NEC 遥控指令的数据格式为:同步码头、地址码、地址反码、控制码、控制反码。同步码由一个 9ms 的低电平和一个 4.5ms 的高电平组成,地址码、地址反码、控制码、控制反码均是8 位数据格式。按照低位在前,高位在后的顺序发送。采用反码是为了增加传输的可靠性(可用于校验)。
我们遥控器的按键“▽”按下时,从红外接收头端收到的波形
NEC 遥控指令的数据格式为:同步码头、地址码、地址反码、控制码、控制反码。
同步码:同步码由一个 9ms 的低电平和一个 4.5ms 的高电平组成,即两位。
地址码:8 位地址。
地址反码:8 位地址。
控制码:8 位控制码
控制反码:8 位控制反码。
一共34位。
从图 中可以看到,其地址码为 0,控制码为 168。可以看到在 100ms 之后,我们还收到了几个脉冲,这是 NEC 码规定的连发码(由 9ms 低电平+2.5m 高电平+0.56ms 低电平+97.94ms 高电平组成),如果在一帧数据发送完毕之后,按键仍然没有放开,则发射重复码,即连发码,可以通过统计连发码的次数来标记按键按下的长短/次数。
2、硬件设计
本实验采用定时器的输入捕获功能实现红外解码,本章实验功能简介:进入等待红外触发,如过接收到正确的红外信号,则解码,并在 串口打印显示键值和所代表的意义,以及按键次数等信息。同样我们也是用 LED0 来指示程序正在运行。
红外遥控接收头连接在 STM32 的 PB9(TIM4_CH4)上。自己可以根据开发板的情况接。
3、软件设计
3.1、红外初始化
void Remote_Init(void)
{
GPIO_Config(); //GPIO初始化
Tim4_Config(); //TIM4初始化
NVIC_Config(); //中断优先级设置
TIM_ITConfig( TIM4,TIM_IT_Update|TIM_IT_CC4,ENABLE);//允许更新中断 ,允许CC4IE捕获中断
}
3.1.1、GPIO初始化
找到一个定时器TIM,能够支持输入捕获和定时的TIM就可以。基本定时器不支持输入捕获。
static void GPIO_Config(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); //使能GPIOB时钟
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PB9 输入
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //上拉输入
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB,GPIO_Pin_9); //初始化GPIOB.9
}
3.1.2、TIM初始化
static void Tim4_Config(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE); //TIM4 时钟使能
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructure.TIM_Period = 10000; //设定计数器自动重装值 最大10ms溢出
TIM_TimeBaseStructure.TIM_Prescaler =(72-1); //预分频器,1M的计数频率,1us加1. 0.01s
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx
TIM_ICInitTypeDef TIM_ICInitStructure; //输入捕获
TIM_ICInitStructure.TIM_Channel = TIM_Channel_4; // 选择输入端 IC4映射到TI4上 ,PB9
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿捕获
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //TIM 输入 4 选择对应地与 IC1 或 IC2 或IC3 或 IC4 相连
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //配置输入分频,不分频
TIM_ICInitStructure.TIM_ICFilter = 0x03;//IC4F=0011 配置输入滤波器 8个定时器时钟周期滤波,一个定时器周期为(72*10000)72Mhz=0.01s
TIM_ICInit(TIM4, &TIM_ICInitStructure);//初始化定时器输入捕获通道
TIM_Cmd(TIM4,ENABLE ); //使能定时器4
}
3.1.3、中断优先级设置
static void NVIC_Config(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; //TIM3中断
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组2:2位抢占优先级,2位响应优先级
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //先占优先级0级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器
}
3.2、中断函数编写
//遥控器接收状态
//[7]:收到了引导码标志
//[6]:得到了一个按键的所有信息
//[5]:保留
//[4]:标记上升沿是否已经被捕获
//[3:0]:溢出计时器
u8 RmtSta=0;
u16 Dval; //下降沿时计数器的值
u32 RmtRec=0; //红外接收到的数据
u8 RmtCnt=0; //按键按下的次数
//定时器4中断服务程序
void TIM4_IRQHandler(void)
{
if(TIM_GetITStatus(TIM4,TIM_IT_Update)!=RESET)
{
if(RmtSta&0x80) //上次有数据被接收到了
{
RmtSta&=~0X10; //取消上升沿已经被捕获标记
if((RmtSta&0X0F)==0X00