代码示例一:初始化YOLOv8模型
代码示例二:加载图像并进行目标检测
代码示例三:训练YOLOv8模型
import torch
from torchvision.models.detection import yolo
from torch.utils.data import DataLoader, random_split
# 加载数据集
dataset = CustomDataset('dataset_path')
# 划分训练集和验证集
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False)
# 加载YOLOv8模型
model = yolo.fasterrcnn_resnet50_fpn(pretrained=False)
# 定义优化器和损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.0