正则表达式入门

正则表达式入门

正则表达式是什么?

比较正规的解释是:正则表达式使用单个字符串来描述、匹配一系列符合某个句法规则的字符串。
在这里,我希望使用一个更为通俗的自然语言来描述它:正则表达式就是用一类字符的统称来描述这一大批字符。举个例子,正则里说汉字,那么其实它就涵盖了所有的中国文字。
现在你是否明白了正则到底是个什么东西了吧?仍不明白?不要紧,继续往下看,文中会通过一些简单的实例来帮助你对正则的理解。

为什么要用正则表达式?

可以这么说,正则表达式能做的,都能够通过正常的编程来实现。那么我们为什么还要学习正则呢?原因很简单:
1)正则表达式能够很大幅度的简化代码,实现起来也更为顺手;
2)用正则表达式去处理字符串,代码更容易理解;
3)通常来说,正则表达式的速度远比自己写逻辑要高很多;

正则表达式要怎么使用?

正则表达式具体怎么使用取决于你用什么编程语言,我们先看大家都熟悉的Javascript.
var reg = new RegExp("1+ " ) ; / / 也 可 以 写 成 : v a r r e g = / [ a − z ] + "); //也可以写成:var reg = /^[a-z]+ ");//varreg=/[az]+/;

^:表示字符串的开始
[a-z]:表示任意小写的字母
+:表示前边的字母至少出现1次,上不封顶
$:表示字符串的结束

应用一:reg.test(“abcd”) //true
从头到尾都是小写的英文字母,所有匹配成功,返回true

应用二:reg.test(“8ddde”) //false
因为开头不是字母,所以匹配失败,返回false

我们再看在C#中正则怎么使用(首先要引用名字空间:System.Text.RegularExpressions)。
Regex reg = new Regex("2+$");
reg.IsMatch(“abcd”); //true
reg.IsMatch(“8ddde”); //false

前边所列举都是用正则去检测一个字符串是否是预期的规则,现则我们再用正则去获取一个大字符串中需要的内容。
var str = “正则表达式(Regular Expression)是对字符串操作的一种逻辑公式”
var reg = /[a-zA-z]+/g; //最后加个“g”表示查找所有符合条件的,不带“g”表示查找第一个符合条件的
var result = str.match(reg); //返回的result是一个数组,包含所有查找到的内容
// result[0]: Regular
// result[1]: Expression

再看C#中如何实现。
string str = “正则表达式(Regular Expression)是对字符串操作的一种逻辑公式”
Regex reg = new Regex("[a-zA-Z]+");
MatchCollection result = reg.Matches(str);
foreach (Match m in result) {
Console.WriteLine(m.Value);
}
输出:
Regular
Expression

正则表达式中的元字符

要写出正则表达式,一定要知道表达式中可以使用哪些字符,代表哪些意思。这好比“人类”代表黄种人、白种人、黑种人等。下边列出了所有的元字符和对于的描述。

元字符 描述
\ 将下一个字符标记为一个特殊字符、或一个原义字符、或一个向后引用、或一个八进制转义符。例如,“\n”匹配一个换行符。“\n”匹配字符"n"。序列“\”匹配“\”而“(”则匹配“(”。

^ 匹配输入字符串的开始位置。如果设置了RegExp对象的Multiline属性,^也匹配“\n”或“\r”之后的位置。

$ 匹配输入字符串的结束位置。如果设置了RegExp对象的Multiline属性,$也匹配“\n”或“\r”之前的位置。

匹配前面的子表达式零次或多次。例如,zo*能匹配“z”以及“zoo”。*等价于{0,}。

匹配前面的子表达式一次或多次。例如,“zo+”能匹配“zo”以及“zoo”,但不能匹配“z”。等价于{1,}。

? 匹配前面的子表达式零次或一次。例如,“do(es)?”可以匹配“does”或“does”中的“do”。?等价于{0,1}。

{n} n是一个非负整数。匹配确定的n次。例如,“o{2}”不能匹配“Bob”中的“o”,但是能匹配“food”中的两个o。

{n,} n是一个非负整数。至少匹配n次。例如,“o{2,}”不能匹配“Bob”中的“o”,但能匹配“foooood”中的所有o。“o{1,}”等价于“o+”。“o{0,}”则等价于“o*”。

{n,m} m和n均为非负整数,其中n<=m。最少匹配n次且最多匹配m次。例如,“o{1,3}”将匹配“fooooood”中的前三个o。“o{0,1}”等价于“o?”。请注意在逗号和两个数之间不能有空格。

? 当该字符紧跟在任何一个其他限制符(*,+,?,{n},{n,},{n,m})后面时,匹配模式是非贪婪的。非贪婪模式尽可能少的匹配所搜索的字符串,而默认的贪婪模式则尽可能多的匹配所搜索的字符串。例如,对于字符串“oooo”,“o?”将匹配单个“o”,而“o+”将匹配所有“o”。

.点 匹配除“\n”之外的任何单个字符。要匹配包括“\n”在内的任何字符,请使用像“[\s\S]”的模式。

(pattern) 匹配pattern并获取这一匹配。所获取的匹配可以从产生的Matches集合得到,在VBScript中使用SubMatches集合,在JScript中则使用$0…$9属性。要匹配圆括号字符,请使用“”或“”或“”。

(?:pattern) 匹配pattern但不获取匹配结果,也就是说这是一个非获取匹配,不进行存储供以后使用。这在使用或字符“(|)”来组合一个模式的各个部分是很有用。例如“industr(?:y|ies)”就是一个比“industry|industries”更简略的表达式。

(?=pattern) 正向肯定预查,在任何匹配pattern的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如,“Windows(?=95|98|NT|2000)”能匹配“Windows2000”中的“Windows”,但不能匹配“Windows3.1”中的“Windows”。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。

(?!pattern) 正向否定预查,在任何不匹配pattern的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如“Windows(?!95|98|NT|2000)”能匹配“Windows3.1”中的“Windows”,但不能匹配“Windows2000”中的“Windows”。

(?<=pattern) 反向肯定预查,与正向肯定预查类似,只是方向相反。例如,“(?<=95|98|NT|2000)Windows”能匹配“2000Windows”中的“Windows”,但不能匹配“3.1Windows”中的“Windows”。

(?<!pattern) 反向否定预查,与正向否定预查类似,只是方向相反。例如“(?<!95|98|NT|2000)Windows”能匹配“3.1Windows”中的“Windows”,但不能匹配“2000Windows”中的“Windows”。

x|y 匹配x或y。例如,“z|food”能匹配“z”或“food”。“(z|f)ood”则匹配“zood”或“food”。
[xyz] 字符集合。匹配所包含的任意一个字符。例如,“[abc]”可以匹配“plain”中的“a”。
[^xyz] 负值字符集合。匹配未包含的任意字符。例如,“[^abc]”可以匹配“plain”中的“plin”。

[a-z] 字符范围。匹配指定范围内的任意字符。例如,“[a-z]”可以匹配“a”到“z”范围内的任意小写字母字符。注意:只有连字符在字符组内部时,并且出两个字符之间时,才能表示字符的范围; 如果出字符组的开头,则只能表示连字符本身。

[^a-z] 负值字符范围。匹配任何不在指定范围内的任意字符。例如,“[^a-z]”可以匹配任何不在“a”到“z”范围内的任意字符。

\b 匹配一个单词边界,也就是指单词和空格间的位置。例如,“er\b”可以匹配“never”中的“er”,但不能匹配“verb”中的“er”。

\B 匹配非单词边界。“er\B”能匹配“verb”中的“er”,但不能匹配“never”中的“er”。

\cx 匹配由x指明的控制字符。例如,\cM匹配一个Control-M或回车符。x的值必须为A-Z或a-z之一。否则,将c视为一个原义的“c”字符。

\d 匹配一个数字字符。等价于[0-9]。

\D 匹配一个非数字字符。等价于[^0-9]。

\f 匹配一个换页符。等价于\x0c和\cL。

\n 匹配一个换行符。等价于\x0a和\cJ。

\r 匹配一个回车符。等价于\x0d和\cM。

\s 匹配任何空白字符,包括空格、制表符、换页符等等。等价于[ \f\n\r\t\v]。

\S 匹配任何非空白字符。等价于[^ \f\n\r\t\v]。

\t 匹配一个制表符。等价于\x09和\cI。

\v 匹配一个垂直制表符。等价于\x0b和\cK。

\w 匹配包括下划线的任何单词字符。等价于“[A-Za-z0-9_]”。

\W 匹配任何非单词字符。等价于“[^A-Za-z0-9_]”。

\xn 匹配n,其中n为十六进制转义值。十六进制转义值必须为确定的两个数字长。例如,“\x41”匹配“A”。“\x041”则等价于“\x04&1”。正则表达式中可以使用ASCII编码。

\num 匹配num,其中num是一个正整数。对所获取的匹配的引用。例如,“(.)\1”匹配两个连续的相同字符。

\n 标识一个八进制转义值或一个向后引用。如果\n之前至少n个获取的子表达式,则n为向后引用。否则,如果n为八进制数字(0-7),则n为一个八进制转义值。

\nm 标识一个八进制转义值或一个向后引用。如果\nm之前至少有nm个获得子表达式,则nm为向后引用。如果\nm之前至少有n个获取,则n为一个后跟文字m的向后引用。如果前面的条件都不满足,若n和m均为八进制数字(0-7),则\nm将匹配八进制转义值nm。

\nml 如果n为八进制数字(0-7),且m和l均为八进制数字(0-7),则匹配八进制转义值nml。

\un 匹配n,其中n是一个用四个十六进制数字表示的Unicode字符。例如,\u00A9匹配版权符号(©)。


  1. a-z ↩︎

  2. a-z ↩︎

内容概要:论文提出了一种基于空间调制的能量高效分子通信方案(SM-MC),将传输符号分为空间符号和浓度符号。空间符号通过激活单个发射纳米机器人的索引来传输信息,浓度符号则采用传统的浓度移位键控(CSK)调制。相比现有的MIMO分子通信方案,SM-MC避免了链路间干扰,降低了检测复杂度并提高了性能。论文分析了SM-MC及其特例SSK-MC的符号错误率(SER),并通过仿真验证了其性能优于传统的MIMO-MC和SISO-MC方案。此外,论文还探讨了分子通信领域的挑战、优势及相关研究工作,强调了空间维度作为新的信息自由度的重要性,并提出了未来的研究方向和技术挑战。 适合人群:具备一定通信理论基础,特别是对纳米通信和分子通信感兴趣的科研人员、研究生和工程师。 使用场景及目标:①理解分子通信中空间调制的工作原理及其优势;②掌握SM-MC系统的具体实现细节,包括发射、接收、检测算法及性能分析;③对比不同分子通信方案(如MIMO-MC、SISO-MC、SSK-MC)的性能差异;④探索分子通信在纳米网络中的应用前景。 其他说明:论文不仅提供了详细的理论分析和仿真验证,还给出了具体的代码实现,帮助读者更好地理解和复现实验结果。此外,论文还讨论了分子通信领域的标准化进展,以及未来可能的研究方向,如混合调制方案、自适应调制技术和纳米机器协作协议等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值