import torch
import torchvision.datasets
from mmcv import DataLoader
from mmcv.cnn import Linear
from torch import nn
dataset = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class LR(nn.Module):
def __init__(self):
super(LR, self).__init__()
self.linear1 = Linear(196608, 10)
def forward(self, input):
output = self.linear1(input)
return output
lrp = LR()
for data in dataloader:
imgs, targets = data
print(imgs.shape)
output = torch.reshape(imgs, (1, 1, 1, -1))
# output = torch.flatten(imgs)
print(output.shape)
output = lrp(output)
print(output.shape)
深度学习pytorch:linear()
最新推荐文章于 2025-04-05 10:31:37 发布