dilation=1,称为空洞卷积,在卷积核相邻像素之间插入一个空白像素。
默认池化核:kernel_size = 3
Ceil_model=True or False: 是否对非完整像素进行保留(默认为False)
import torch
import torchvision.datasets
from mmcv import DataLoader
from mmcv.cnn import MaxPool2d
from torch import nn
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=False, download=True,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)
# input = torch.tensor([[1, 2, 0, 3, 1],
# [0, 1, 2, 3, 1],
# [1, 2, 1, 0, 0],
# [5, 2, 3, 1, 1],
# [2, 1, 0, 1, 1]], dtype=torch.float32) # 经常使用的是浮点数,而这里计算机以为是整数,所以需要变一下
# input = torch.reshape(input, (-1, 1, 5, 5)) # Input: (N, C, H_{in}, W_{in}) N 为batchsize
#
# print(input.shape)
class LR(nn.Module):
def __init__(self):
super(LR, self).__init__()
self.maxpool = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool(input)
return output
lrp = LR()
# output = lrp(input)
# print(output)
writer = SummaryWriter("logs_maxpool")
step = 0
for data in dataloader:
imgs, labels = data
writer.add_images("input", imgs, step)
output = lrp(imgs)
writer.add_images("output", output, step)
step = step + 1
writer.close()