【论文总结】 Multi-source Domain Adaptation (持续更新)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


Single-source DA vs Multi-source DA

SUDA

  • labeled data is from one single source domain
  • 常用solution: learn to map the data from source & target domains into a common feature space to learn domain-invariant representations by minimizing domain distribution discrepancy (MMD/)

MUDA

  • shift between multiple source domains (hard to align)
  • 有时候 domain 之间拥有的 class 范围甚至不同
  • 在domain-specific decision boundary 附近的 target samples 可能会被不同的classifier 判别出不同的labels
  • 常用sol:two-stage alignments
    – stage I: map each pair of source and target domains data into multiple different feature spaces --> align domain-specific distributions to learn multiple domain-invariant representations --> train multiple domain-specific classifiers using multiple domains-invariant representations
    – stage II: aligning domain-specific classifiers
    SUDA vs MUDA

Paper I: Aligning Domain-specific Distribution and Classifier for Cross-domain Classification from Multiple Sources (AAAI’19)


Problem Formulation

Given

  • N N N different underlying source distributions { p s j ( x , y ) } j = 1 N \{p_{sj}(x,y)\}_{j=1}^{N} { psj(x,y)}j=1N and labeled source domain data { ( X s j , Y s j ) } j = 1 N \{(X_{sj}, Y_{sj})\}_{j=1}^{N} {(Xsj,Ysj)}j=1N drawn from these distributions
  • target distribution { p t ( x , y ) } \{p_{t}(x,y)\} { pt(x,y)} , from which target domain data X t X_t Xt are sampled yet without label observation Y t Y_t Yt .

Objective


Methodology

在这里插入图片描述

Two-stage alignment Framework
Common feature extractor

A common subnetwork f ( . ) f(.)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值