提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
Single-source DA vs Multi-source DA
SUDA
- labeled data is from one single source domain
- 常用solution: learn to map the data from source & target domains into a common feature space to learn domain-invariant representations by minimizing domain distribution discrepancy (MMD/)
MUDA
- shift between multiple source domains (hard to align)
- 有时候 domain 之间拥有的 class 范围甚至不同
- 在domain-specific decision boundary 附近的 target samples 可能会被不同的classifier 判别出不同的labels
- 常用sol:two-stage alignments
– stage I: map each pair of source and target domains data into multiple different feature spaces --> align domain-specific distributions to learn multiple domain-invariant representations --> train multiple domain-specific classifiers using multiple domains-invariant representations
– stage II: aligning domain-specific classifiers
Paper I: Aligning Domain-specific Distribution and Classifier for Cross-domain Classification from Multiple Sources (AAAI’19)
Problem Formulation
Given
- N N N different underlying source distributions { p s j ( x , y ) } j = 1 N \{p_{sj}(x,y)\}_{j=1}^{N} { psj(x,y)}j=1N and labeled source domain data { ( X s j , Y s j ) } j = 1 N \{(X_{sj}, Y_{sj})\}_{j=1}^{N} {(Xsj,Ysj)}j=1N drawn from these distributions
- target distribution { p t ( x , y ) } \{p_{t}(x,y)\} { pt(x,y)} , from which target domain data X t X_t Xt are sampled yet without label observation Y t Y_t Yt .
Objective
Methodology
Two-stage alignment Framework
Common feature extractor
A common subnetwork f ( . ) f(.)