【小白学习PyTorch教程】五、在 PyTorch 中使用 Datasets 和 DataLoader 自定义数据

本文介绍了如何在PyTorch中利用DataLoader处理大数据集,特别是批处理和自定义数据集。通过示例展示了加载内置MNIST数据集和创建自定义数据集的过程,强调了DataLoader在批量加载和内存管理中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@Author:Runsen

有时候,在处理大数据集时,一次将整个数据加载到内存中变得非常难。

因此,唯一的方法是将数据分批加载到内存中进行处理,这需要编写额外的代码来执行此操作。对此,PyTorch 已经提供了 Dataloader 功能。

DataLoader

下面显示了 PyTorch 库中DataLoader函数的语法及其参数信息。

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
      
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小刘要努力。

顺便点一个赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值