@Author:Runsen
卷积神经网络
Yann LeCun 和Yoshua Bengio在1995年引入了卷积神经网络,也称为卷积网络或CNN。CNN是一种特殊的多层神经网络,用于处理具有明显网格状拓扑的数据。其网络的基础基于称为卷积的数学运算。
卷积神经网络(CNN)的类型
以下是一些不同类型的CNN:
-
1D CNN:1D CNN 的输入和输出数据是二维的。一维CNN大多用于时间序列。
-
2D CNNN:2D CNN的输入和输出数据是三维的。我们通常将其用于图像数据问题。
-
3D CNNN:3D CNN的输入和输出数据是四维的。一般在3D图像上使用3D CNN,例如MRI(磁共振成像),CT扫描(甲CT扫描或计算机断层扫描(以前称为计算机轴向断层或CAT扫描)是一种医学成像 技术中使用的放射学获得用于非侵入性详述的身体的图像诊断的目的)和其他复杂应用程序的DICOM图像(医学数字成像)
网络架构
以下是CNN中不同层的网络架构:
- 卷积层
- 池化层
- 全连接层
CNN架构的完整概述