PyTorch | QuickStart
参考:
https://pytorch.org/tutorials/beginner/basics/intro.html
1. Quickstart
本节给出一个快速入门的例子,具体类别的变量还是要看对应章节的介绍。
1.1 Data
torch.utils.data.Dataset
- Dataset stores the samples and their corresponding labels.
- 所有数据集都要继承的类。
torch.utils.data.DataLoader
-
DataLoader wraps an iterable around the Dataset.
-
从Dataset变为Dataloader
train_dataloader = DataLoader(training_Dataset, batch_size=batch_size)
-
DataLoader类似iterator,可以用for循环遍历其中的元素
for X, y in test_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
备注:
- PyTorch offers domain-specific libraries such as TorchText, TorchVision, and TorchAudio, all of which include datasets.如TorchVision预置的数据集
1.2 查询训练用的是CPU还是GPU
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
1.3 创建模型
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
# 如果能用Cuda就用Cuda。
device = "cuda" if torch.cuda.is_available() else "cpu"
model = NeuralNetwork().to(device)
print(model)
1.4 Optimizing the Model Parameters (优化器设置)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
然后就可以训练了
1.5 Train & Test
def train(dataloader,model,loss_fn,optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model):
size = len(dataloader.dataset)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= size
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
1.6 主程序
if __name__ =="__main__":
epochs = 5
for t in range(epochs):
print(f"Epoch {t + 1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model)
print("Done!")
1.7 保存和读取模型
Save
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
Load
import torch
from torch import nn
from torch.utils.data import DataLoader
# 使用视觉库的例子
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
# 1.1 导入数据
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
2. Tensors
- Tensors are similar to NumPy’s ndarrays, except that tensors can run on GPUs or other hardware accelerators.
- 实际上,Tensors和NumPy数组通常可以共享相同的基础内存,从而无需复制数据。
- Tensors也针对AutoGrad进行了优化。
2.1 初始化一个Tensor
Directly from data (list)
The data type is automatically inferred.
data = [[1, 2