python技巧之求众数篇

本文介绍了两种Python计算中位数的方法,包括排序后取中点值和利用numpy库。同时,提供了两种求众数的方案,一是通过numpy的bincount结合argmax,二是直接使用scipy的stats模块的mode函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最佳方法:
  采用取反的方式来求中位数,排序后结果为l=[1,2,3,4,5,6,7,8,9,10],长度为10,half=10//2=5,x[5]为列表的第六位数,5的取反数为-6,x[-6]实际上是对列表进行反向查找,为列表中的第五位数,长度为偶数10时中值5+6/2=5.5。

当结果为l=[1,2,3,4,5,6,7,8,9]时,长度为9,half=9//2=4,x[4]为列表的第五位数,4取反为-5,x[-5]在列表中是正向反向查找中的第五位数,所以x[4]==x[-5],中位数就为x[4]或者x[-5]。

复制代码
def median(data):
data.sort()
half = len(data) // 2
return (data[half] + data[~half])/2

l = [1,2,3,7,5,6,4,9,8,10]
if name == ‘main’:
print(median(l))

还可以用numpy库来完成这一操作
python] view plain copy

nums = [1,2,3,4]

求均值和中位数均可以使用numpy库的方法:
[python] view plain copy

import numpy as np

#均值
np.mean(nums)
#中位数
np.median(nums)

求众数方法一:
在numpy中没有直接的方法,但是也可以这样实现:

[python] view plain copy

import numpy as np

counts = np.bincount(nums)
#返回众数
np.argmax(counts)
其中np.bincount方法返回了一个长度为nums最大值的列表,列表中的每个值代表其索引位数值出现在nums中的次数,例如

返回[2,1,0],代表0在nums中出现2次,而1在nums中出现1次,3在nums中没有出现。

然后再使用np.argmax就能得到众数啦。但是,由于索引值是从0开始的,所以这种求众数的方法只能用在非负数据集。

求众数方法二——直接利用scipy下stats模块【推荐】:
[python] view plain copy

from scipy import stats

stats.mode(nums)[0][0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值