对于分类算法,常用的评价指标有:
(1)Precision
(2)Recall
(3)F-score
(4)Accuracy
(5)ROC
(6)AUC
ps:不建议翻译成中文,尤其是Precision和Accuracy,容易引起歧义。
1.混淆矩阵
混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息。矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别。
图1 混淆矩阵
如图1所示,在混淆矩阵中,包含以下四种数据:
a、真正(True Positive , TP):被模型预测为正的正样本
b、假正(False Positive , FP):被模型预测为正的负样本
c、假负(False Negative , FN):被模型预测为负的正样本
d、真负(True Negative , TN):被模型预测为负的负样本
根据这四种数据,有四个比较重要的比率,其中TPR和TNR更为常用:
-
真正率(True Positive Rate , TPR)【灵敏度(sensitivity)】:TPR = TP /(TP + FN) ,即正样本预测结果数/ 正