import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x*w
def cost(xs, ys):
cost = 0
for x, y in zip(xs, ys):
y_pred = forward(x)
cost += (y_pred - y) ** 2
return cost/len(xs)
def gradient(xs, ys):
grad = 0
for x, y in zip(xs, ys):
grad += 2*x*(x*w-y)
return grad/len(xs)
print('Predict (before training)', 4, forward(4))
epoch_list = []
cost_list = []
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradient(x_data, y_data)
w -= 0.01 * grad_val
print('Epoch:', epoch, 'w=', w, 'loss=', cost_val)
epoch_list.append(epoch)
cost_list.append(cost_val)
print('Predict (after training)', 4, forward(4))
plt.plot(epoch_list, cost_list)
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.show()