Multimodal Reasoning with Multimodal Knowledge Graph

摘要

大型语言模型(llm)的多模态推理常常存在幻觉和llm中存在缺陷或过时的知识。一些方法试图通过使用文本知识图来缓解这些问题,但其单一的知识形态限制了全面的跨模态理解。本文提出了多模态推理与多模态知识图(MR-MKG)方法,该方法利用多模态知识图(mmkg)跨模态学习丰富的语义知识,显著提高了法学硕士的多模态推理能力。其中,利用关系图关注网络编码MMKGs,设计了跨模态对齐模块优化图像-文本对齐。构建了基于mmkgground的数据集,通过预训练为llm提供多模态推理的初始专业知识。值得注意的是,MR-MKG在只训练一小部分参数(约为LLM参数大小的2.25%)的情况下取得了优异的性能。在多模态问答和多模态类比推理任务上的实验结果表明,我们的MR-MKG方法优于以前最先进的模型。

1.介绍

最近,大型语言模型(llm) (Chen et al ., 2020;Achiam等人,2023)已经证明了它们在各种NLP任务中的优越性和鲁棒性(Zhang等人,2024b;Robinson et al ., 2023;Chang et al ., 2024)。为了进一步释放法学硕士的潜力,研究人员(Wu et al ., 2023a;黄等,2023

### Graph RAG Implementation and Explanation The Retrieval-Augmented Generation (RAG) framework combines the strengths of both retrieval-based and generative models, enhancing performance by leveraging external knowledge sources[^1]. In the context of graph-based implementations, integrating graphs into RAG allows for more structured and semantically rich data to be retrieved during the generation process. #### Key Concepts in Graph-Based RAG Graphs provide a natural way to represent relationships between entities, making them an ideal candidate for augmenting retrieval systems within RAG frameworks. The following concepts are central: 1. **Knowledge Graph Integration**: Knowledge graphs can serve as the backbone of the retrieval component in RAG. By indexing nodes and edges from these graphs, the model retrieves relevant subgraphs that contain contextualized information about query terms. 2. **Entity Linking**: Entity linking is crucial when working with graphs because it maps mentions in text queries to corresponding nodes in the knowledge graph. This ensures accurate retrieval of related entities and their attributes. 3. **Subgraph Extraction**: Once entity linking identifies key nodes, algorithms extract connected components forming meaningful subgraphs around those entities. These extracted subgraphs act as input contexts fed into transformer layers alongside user inputs. 4. **Attention Mechanisms Over Subgraphs**: Advanced attention mechanisms allow transformers not only to focus on token-level representations but also incorporate structural dependencies present across linked entities via adjacency matrices derived from the underlying graph structure. #### Example Code Snippet Demonstrating Basic Workflow Below demonstrates how one might implement parts of this pipeline using Python libraries such as PyTorch Geometric for handling graph structures combined with HuggingFace Transformers library for NLP tasks. ```python import torch from torch_geometric.data import Data from transformers import BertTokenizerFast, EncoderDecoderModel def create_graph_data(entities, relations): edge_index = [[], []] node_features = [] # Populate based off your dataset specifics... return Data(x=torch.tensor(node_features), edge_index=torch.tensor(edge_index)) tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') model = EncoderDecoderModel.from_encoder_decoder_pretrained( 'bert-base-uncased', 'bert-base-uncased' ) query = "What is machine learning?" inputs = tokenizer(query, return_tensors="pt") # Assume `create_graph_data` returns preprocessed graph object G G = create_graph_data(...) with torch.no_grad(): outputs = model.generate(inputs.input_ids, encoder_outputs=G.x) print(tokenizer.decode(outputs[0])) ``` This simplified example outlines creating custom graph objects compatible with neural architectures while utilizing pretrained language encoders/decoders capable of generating coherent responses conditioned upon retrieved content represented through graphs. §§Related Questions§§ 1. How does incorporating attention over graph structures improve downstream task accuracy compared to traditional flat sequence modeling? 2. What specific challenges arise when scaling up graph-RAG systems to handle large-scale industrial applications involving millions of interconnected entities? 3. Can you explain alternative methods besides BERT-like embeddings used within modern-day graph-enhanced retrievers like KnowledGPT mentioned earlier? 4. Are there any publicly available datasets tailored specifically towards evaluating hybrid retrieval-generative approaches enhanced by explicit relational reasoning provided by graphs? 5. Which architectural modifications would need consideration transitioning standard seq2seq models toward supporting richer multimodal inputs including textual descriptions paired against visual depictions indexed inside semantic networks modeled after RDF triples format commonly found throughout Linked Open Data initiatives worldwide today ?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值