AlexNet详解
model.py
'''
python3.7
-*- coding: UTF-8 -*-
@Project -> File :pythonProject -> model
@IDE :PyCharm
@Author :YangShouWei
@USER: 296714435
@Date :2022/2/19 18:20:28
@LastEditor:
'''
import torch
import torch.nn as nn
class AlexNet(nn.Module):
def __init__(self,num_classes=1000, init_weights=False):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224,224] output[48, 55, 55]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[48,27, 27]
nn.Conv2d(48, 128, kernel_size=5, padding=2), # output [128, 27, 27]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13]
nn.Conv2d(128, 192,kernel_size=3,padding=1), # output[192, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(192, 192,kernel_size=3,padding=1), # output[192, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(192, 128,kernel_size=3,padding=1), # [128, 13, 13]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6]
)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(128 * 6 * 6, 2048),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(2048, 2048),
nn.ReLU(inplace=True),
nn.Linear(2048, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self,x):
x = self.features(x)
x = torch.flatten(x, start_dim=1) # 展平操作,[batch,channel,Height,Width] 参数1表示从channel开始,把C,H,W三个维度展成一维向量。不去改动batch
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules(): # self.modules 继承nn.Modules, 返回一个层结构迭代器,里面包含了上面网络定义中的每一层结构
if isinstance(m, nn.Conv2d): # 遍历到自己定义的卷积层以后就进行卷积初始化
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu') # 对卷积权重进行初始化。
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)