1、栈结构的实现
class Stack(object):
"""栈操作"""
def __init__(self):
self.__list = []
def push(self,item):
"""
添加一个新元素item到栈顶
:param item:
:return:
"""
self.__list.append(item)
def pop(self):
"""弹出栈顶元素"""
return self.__list.pop()
def peek(self):
"""返回栈顶元素"""
if self.__list:
return self.__list[-1]
else:
return None
def is_empty(self):
"""判断栈是否为空"""
return self.__list == []
def size(self):
return len(self.__list)
if __name__ == "__main__":
s = Stack()
s.push(1)
s.push(2)
s.push(3)
s.push(4)
print(s.pop())
print(s.pop())
print(s.pop())
2、队列的操作
class queue(object):
"""队列"""
def __init__(self):
self.__list = []
def enqueue(self,item):
"""往队列里添加一个item元素"""
self.__list.append(item)
def dequeue(self):
"""从队列头部删除一个元素"""
return self.__list.pop(0)
def is_empty(self):
"""判断是否为空"""
return self.__list == []
def size(self):
"""返回队列大小"""
return len(self.__list)
if __name__ == "__main__":
q = queue()
q.enqueue(1)
q.enqueue(2)
q.enqueue(3)
print(q.dequeue())
print(q.dequeue())
print(q.dequeue())
3、双向队列
class muldeque(object):
def __init__(self):
self.__list = []
def add_front(self,item):
"""往队列里添加一个item元素"""
self.__list.insert(0,item)
def add_rear(self,item):
self.__list.append(item)
def pop_front(self):
"""从队列头部删除一个元素"""
return self.__list.pop(0)
def pop_rear(self):
return self.__list.pop()
def is_empty(self):
"""判断是否为空"""
return self.__list == []
def size(self):
"""返回队列大小"""
return len(self.__list)
if __name__ == "__main__":
q = muldeque()
q.add_front(1)
q.add_front(2)
q.add_front(3)
q.add_rear(100)
q.add_rear(99)
q.add_rear(98)
print(q.pop_front())
print(q.pop_rear())
4、树结构
- 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
- 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
- 二叉树:每个节点最多含有两个子树的树称为二叉树;
- 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
- 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
- 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
- 霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
- B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。
class Node(object):
"""节点类"""
def __init__(self,item):
self.elem = item
self.lchild = None
self.rchild = None
class Tree(object):
"""二叉树"""
def __init__(self):
self.root = None
def add(self,item):
"""
为树添加节点
:param item:
:return:
"""
node = Node(item)
# 如果树是空的,则对根节点赋值
if self.root is None:
self.root = node
# 返回空值
return
else:
queue = []
queue.append(self.root)
while queue:
# 弹出队列的第一个元素
cur_node = queue.pop(0)
if cur_node.lchild == None:
cur_node.lchild = node
return
else:
# 如果不为空,则加入左子树继续判断
queue.append(cur_node.lchild)
if cur_node.rchild == None:
cur_node.rchild = node
return
else:
# 如果不为空,则加入右子树继续判断
queue.append(cur_node.rchild)
def breadth_travel(self):
"""广度遍历"""
# 如果树为空
if self.root is None:
return
# 树不为空时,首先遍历根节点,然后遍历左子树,右子树
queue = [self.root]
while queue:
cur_node = queue.pop(0)
print(cur_node.elem,end = "\t")
if cur_node.lchild is not None:
queue.append(cur_node.lchild)
if cur_node.rchild is not None:
queue.append(cur_node.rchild)
def preorder(self,node):
"""先序,根左右"""
if node is None:
return
print(node.elem,end = " ")
self.preorder(node.lchild)
self.preorder(node.rchild)
def inorder(self,node):
"""中序,左根右"""
if node is None:
return
self.inorder(node.lchild)
print(node.elem, end=" ")
self.inorder(node.rchild)
def postorder(self,node):
"""后序,左右根"""
if node is None:
return
self.postorder(node.lchild)
self.postorder(node.rchild)
print(node.elem, end=" ")
if __name__ == "__main__":
tree = Tree()
tree.add(1)
tree.add(2)
tree.add(3)
tree.add(4)
tree.add(5)
tree.add(6)
tree.breadth_travel()
print("\t")
print("*************************")
tree.preorder(tree.root)
print("\t")
print("*************************")
tree.inorder(tree.root)
print("\t")
print("*************************")
tree.postorder(tree.root)