'''
author: cbb
这个库基于贝塞尔曲线实现模拟人手动滑动的轨迹
可以用于selenium轨迹的模拟,或者生成轨迹数组用于js加密通过网站服务器后端分控检测
'''
import time
import numpy as np
import math
import random
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
class bezierTrajectory:
def _bztsg(self, dataTrajectory):
lengthOfdata = len(dataTrajectory)
def staer(x):
t = ((x - dataTrajectory[0][0]) / (dataTrajectory[-1][0] - dataTrajectory[0][0]))
y = np.array([0, 0], dtype=np.float64)
for s in range(len(dataTrajectory)):
y += dataTrajectory[s] * ((math.factorial(lengthOfdata - 1) / (
math.factorial(s) * math.factorial(lengthOfdata - 1 - s))) * math.pow(t, s) * math.pow(
(1 - t), lengthOfdata - 1 - s))
return y[1]
return staer
def _type(self, type, x, numberList):
numberListre = []
pin = (x[1] - x[0]) / numberList
if type == 0:
for i in range(numberList):
numberListre.append(i * pin)
if pin >= 0:
numberListre = numberListre[::-1]
elif type == 1:
for i in range(numberList):
numberListre.append(1 * ((i * pin) ** 2))
numberListre = numberListre[::-1]
elif type == 2:
for i in range(numberList):
numberListre.append(1 * ((i * pin - x[1]) ** 2))
elif type == 3:
dataTrajectory = [np.array([0,0]), np.array([(x[1]-x[0])*0.8, (x[1]-x[0])*0.6]), np.array([x[1]-x[0], 0])]
fun = self._bztsg(dataTrajectory)
numberListre = [0]
for i in range(1,numberList):
numberListre.append(fun(i * pin) + numberListre[-1])
if pin >= 0:
numberListre = numberListre[::-1]
numberListre = np.abs(np.array(numberListre) - max(numberListre))
biaoNumberList = ((numberListre - numberListre[numberListre.argmin()]) / (
numberListre[numberListre.argmax()] - numberListre[numberListre.argmin()])) * (x[1] - x[0]) + x[0]
biaoNumberList[0] = x[0]
biaoNumberList[-1] = x[1]
return biaoNumberList
def getFun(self, s):
'''
:param s: 传入P点
:return: 返回公式
'''
dataTrajectory = []
for i in s:
dataTrajectory.append(np.array(i))
return self._bztsg(dataTrajectory)
def simulation(self, start, end, le=1, deviation=0, bias=0.5):
'''
:param start:开始点的坐标 如 start = [0, 0]
:param end:结束点的坐标 如 end = [100, 100]
:param le:几阶贝塞尔曲线,越大越复杂 如 le = 4
:param deviation:轨迹上下波动的范围 如 deviation = 10
:param bias:波动范围的分布位置 如 bias = 0.5
:return:返回一个字典equation对应该曲线的方程,P对应贝塞尔曲线的影响点
'''
start = np.array(start)
end = np.array(end)
cbb = []
if le != 1:
e = (1 - bias) / (le - 1)
cbb = [[bias + e * i, bias + e * (i + 1)] for i in range(le - 1)]
dataTrajectoryList = [start]
t = random.choice([-1, 1])
w = 0
for i in cbb:
px1 = start[0] + (end[0] - start[0]) * (random.random() * (i[1] - i[0]) + (i[0]))
p = np.array([px1, self._bztsg([start, end])(px1) + t * deviation])
dataTrajectoryList.append(p)
w += 1
if w >= 2:
w = 0
t = -1 * t
dataTrajectoryList.append(end)
return {"equation": self._bztsg(dataTrajectoryList), "P": np.array(dataTrajectoryList)}
def trackArray(self, start, end, numberList, le=1, deviation=0, bias=0.5, type=0, cbb=0, yhh=10):
'''
:param start:开始点的坐标 如 start = [0, 0]
:param end:结束点的坐标 如 end = [100, 100]
:param numberList:返回的数组的轨迹点的数量 numberList = 150
:param le:几阶贝塞尔曲线,越大越复杂 如 le = 4
:param deviation:轨迹上下波动的范围 如 deviation = 10
:param bias:波动范围的分布位置 如 bias = 0.5
:param type:0表示均速滑动,1表示先慢后快,2表示先快后慢,3表示先慢中间快后慢 如 type = 1
:param cbb:在终点来回摆动的次数
:param yhh:在终点来回摆动的范围
:return:返回一个字典trackArray对应轨迹数组,P对应贝塞尔曲线的影响点
'''
s = []
fun = self.simulation(start, end, le, deviation, bias)
w = fun['P']
fun = fun["equation"]
if cbb != 0:
numberListOfcbb = round(numberList*0.2/(cbb+1))
numberList -= (numberListOfcbb*(cbb+1))
xTrackArray = self._type(type, [start[0], end[0]], numberList)
for i in xTrackArray:
s.append([i, fun(i)])
dq = yhh/cbb
kg = 0
ends = np.copy(end)
for i in range(cbb):
if kg == 0:
d = np.array([end[0] + (yhh-dq*i), ((end[1]-start[1])/(end[0]-start[0]))*(end[0]+(yhh-dq*i)) +(end[1]-((end[1]-start[1])/(end[0]-start[0]))*end[0]) ])
kg = 1
else:
d = np.array([end[0] - (yhh - dq * i), ((end[1]-start[1])/(end[0]-start[0]))*(end[0]-(yhh-dq*i)) +(end[1]-((end[1]-start[1])/(end[0]-start[0]))*end[0]) ])
kg = 0
print(d)
y = self.trackArray(ends, d, numberListOfcbb, le=2, deviation=0, bias=0.5, type=0, cbb=0, yhh=10)
s += list(y['trackArray'])
ends = d
y = self.trackArray(ends, end, numberListOfcbb, le=2, deviation=0, bias=0.5, type=0, cbb=0, yhh=10)
s += list(y['trackArray'])
else:
xTrackArray = self._type(type, [start[0], end[0]], numberList)
for i in xTrackArray:
s.append([i, fun(i)])
return {"trackArray": np.array(s), "P": w}
driver = webdriver.Chrome()
driver.get('https://www.alimama.com/member/minilogin.htm')
input('111')
# slider = wait.until(EC.element_to_be_clickable((By.ID, 'nc_1_n1z')))
slider = driver.find_element(By.XPATH, '//span[@id="nc_1_n1z"]')
ActionChains(driver).click_and_hold(slider).perform()
bz = bezierTrajectory()
gj = bz.trackArray([0, 0], [300, 30], 30, le=3, deviation=10, type=3, cbb=1)
for x in gj['trackArray']:
print(list(x))
ActionChains(driver).move_by_offset(xoffset=x[0], yoffset=x[1]).perform()
# time.sleep(0.01)
time.sleep(1)
ActionChains(driver).release(slider).perform()```
selenium鼠标轨迹模拟代码
最新推荐文章于 2025-04-17 19:15:00 发布