1.
g
c
d
(
a
1
,
a
2
,
a
3
.
.
.
,
a
n
)
=
g
c
d
(
a
1
,
a
2
−
a
1
,
a
3
−
a
2
,
.
.
.
,
a
n
−
a
n
−
1
)
gcd(a_1,a_2,a_3...,a_n)=gcd(a_1,a_2-a_1,a_3-a_2,...,a_n-a_{n-1})
gcd(a1,a2,a3...,an)=gcd(a1,a2−a1,a3−a2,...,an−an−1)
2.gcd满足区间可加性,区间的gcd问题常常使用线段树维护
3.
[
g
c
d
(
x
,
y
)
=
=
1
]
=
∑
d
∣
g
c
d
(
x
,
y
)
u
(
d
)
=
∑
d
=
1
m
i
n
(
x
,
y
)
u
(
d
)
∗
[
d
∣
g
c
d
(
x
,
y
)
]
[gcd(x,y)==1]=\sum_{d|gcd(x,y)}u(d)=\sum_{d=1}^{min(x,y)}u(d)*[d|gcd(x,y)]
[gcd(x,y)==1]=∑d∣gcd(x,y)u(d)=∑d=1min(x,y)u(d)∗[d∣gcd(x,y)]
证明:
若gcd(x,y)为1,那么u(1)=1
将gcd(x,y)素因子分解,假设有n个素因子,那么选奇数个素因子u为-1,偶数个素因子u为1。那么答案就是C(n,0)-C(n,1)+C(n,2)…=0。
4.gcd(x,y)=
∑
d
∣
g
c
d
(
x
,
y
)
φ
(
d
)
=
∑
d
=
1
m
i
n
(
x
,
y
)
φ
(
d
)
∗
[
d
∣
g
c
d
(
x
,
y
)
]
\sum_{d|gcd(x,y)}φ(d)=\sum_{d=1}^{min(x,y)}φ(d)*[d|gcd(x,y)]
∑d∣gcd(x,y)φ(d)=∑d=1min(x,y)φ(d)∗[d∣gcd(x,y)]
gcd的一些解题性质与思路
最新推荐文章于 2025-03-14 23:13:26 发布