深度学习 BP网络

import math
import random
import matplotlib.pyplot as plt
import numpy as np
from time import *

class moon_data_class(object):
  def __init__(self,N,d,r,w):
    self.N=N
    self.w=w
    
    self.d=d
    self.r=r
   
   
  def sgn(self,x):
    if(x>0):
      return 1;
    else:
      return -1;
     
  def sig(self,x):
    return 1.0/(1+np.exp(x))
   
     
  def dbmoon(self):
    N1 = 10*self.N
    N = self.N
    r = self.r
    w2 = self.w/2
    d = self.d
    done = True
    data = np.empty(0)
    while done:
      #generate Rectangular data
      tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
      tmp_y = (r+w2)*np.random.random([N1, 1])
      tmp = np.concatenate((tmp_x, tmp_y), axis=1)
      tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
      #generate double moon data ---upper
      idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
      idx = (idx.nonzero())[0]
    
      if data.shape[0] == 0:
        data = tmp.take(idx, axis=0)
      else:
        data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
      if data.shape[0] >= N:
        done = False
    #print (data)
    db_moon = data[0:N, :]
    #print (db_moon)
    #generate double moon data ----down
    data_t = np.empty([N, 2])
    data_t[:, 0] = data[0:N, 0] + r
    data_t[:, 1] = -data[0:N, 1] - d
    db_moon = np.concatenate((db_moon, data_t), axis=0)
    return db_moon


def rand(a,b):
  return (b-a)* random.random()+a
 
def sigmoid(x):
  #return np.tanh(-2.0*x)
  return 1.0/(1.0+math.exp(-x))

def sigmoid_derivate(x):
  #return -2.0*(1.0-np.tanh(-2.0*x)*np.tanh(-2.0*x))
  return x*(1-x) #sigmoid函数的导数

#生成一个矩阵,大小为m*n,并且设置默认零矩阵
def make_matrix(m,n,fill=0.0):
    a = []
    for i in range(m):
        a.append([fill]*n)
    return a

class BP_NET(object):
  def __init__(self):
    self.input_n = 0
    self.hidden_n = 0
    self.output_n = 0
    self.input_cells = []
    self.bias_input_n = []
    self.bias_output = []
    self.hidden_cells = []
    self.output_cells = []
    self.input_weights = []
    self.output_weights = []
     
    self.input_correction = []
    self.output_correction = []
   
  def setup(self, ni,nh,no):
    self.input_n = ni+1#输入层+偏置项
    self.hidden_n = nh
    self.output_n = no
    self.input_cells = [1.0]*self.input_n
    self.hidden_cells = [1.0]*self.hidden_n
    self.output_cells = [1.0]*self.output_n
     
    self.input_weights = make_matrix(self.input_n,self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n,self.output_n)
     
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        self.input_weights[i][h] = rand(-0.2,0.2)
     
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        self.output_weights[h][o] = rand(-2.0,2.0)
     
    self.input_correction = make_matrix(self.input_n , self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n,self.output_n)
         
  def predict(self,inputs):
    for i in range(self.input_n-1):
      self.input_cells[i] = inputs[i]
     
    for j in range(self.hidden_n):
      total = 0.0
      for i in range(self.input_n):
        total += self.input_cells[i] * self.input_weights[i][j]
      self.hidden_cells[j] = sigmoid(total)
       
    for k in range(self.output_n):
      total = 0.0
      for j in range(self.hidden_n):
        total+= self.hidden_cells[j]*self.output_weights[j][k]# + self.bias_output[k]
         
      self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]
   
  def back_propagate(self, case,label,learn,correct):
    #计算得到输出output_cells
    self.predict(case)
    output_deltas = [0.0]*self.output_n
    error = 0.0
    #计算误差 = 期望输出-实际输出
    for o in range(self.output_n):
      error = label[o] - self.output_cells[o] #正确结果和预测结果的误差:0,1,-1
      output_deltas[o]= sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内
  
    hidden_deltas = [0.0] * self.hidden_n
    for j in range(self.hidden_n):
      error = 0.0
      for k in range(self.output_n):
        error+= output_deltas[k]*self.output_weights[j][k]
      hidden_deltas[j] = sigmoid_derivate(self.hidden_cells[j])*error 
 
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        change = output_deltas[o]*self.hidden_cells[h]
        #调整权重:上一层每个节点的权重学习*变化+矫正率
        self.output_weights[h][o] += learn*change 
    #更新输入->隐藏层的权重
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        change = hidden_deltas[h]*self.input_cells[i]
        self.input_weights[i][h] += learn*change 
       
       
    error = 0
    for o in range(len(label)):
      for k in range(self.output_n):
        error+= 0.5*(label[o] - self.output_cells[k])**2
       
    return error
     
  def train(self,cases,labels, limit, learn,correct=0.1):
 
    for i in range(limit):        
        ls_error = []
        error = 0.0
        # learn = le.arn_speed_start /float(i+1)    
        for j in range(len(cases)):
            case = cases[j]
            label = labels[j] 
              
            error+= self.back_propagate(case, label, learn,correct)
            ls_error.append(error)
        #if((i+1)%500==0):
            #print("error:",error)
    x = []
    for i in range(len(ls_error)):
        x.append(len(ls_error)-i)
    plt.plot(x,ls_error)
    plt.show()
         
  def test(self): #学习异或
 
     
    N = 200
    d = -4
    r = 10
    width = 6
     
    data_source = moon_data_class(N, d, r, width)
    data = data_source.dbmoon()
     
 
     
    # x0 = [1 for x in range(1,401)]
    input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
     
    labels_pre = [[1.0] for y in range(1, 201)]
    labels_pos = [[0.0] for y in range(1, 201)]
    labels=labels_pre+labels_pos
     
    self.setup(2,5,1) #初始化神经网络:输入层,隐藏层,输出层元素个数
    self.train(input_cells,labels,2000,0.05,0.1) #可以更改
     
    test_x = []
    test_y = []
    test_p = []
     
    y_p_old = 0
   
    for x in np.arange(-15.,25.,0.1):
 
      for y in np.arange(-10.,10.,0.1):
        y_p =self.predict(np.array([x, y]))
 
        if(y_p_old <0.5 and y_p[0] > 0.5):
          test_x.append(x)
          test_y.append(y)
          test_p.append([y_p_old,y_p[0]])
        y_p_old = y_p[0]
    #画决策边界
    plt.plot( test_x, test_y, 'g--')  
    plt.plot(data[0:N, 0], data[0:N, 1], 'r*', data[N:2*N, 0], data[N:2*N, 1], 'b*')
    plt.show()  
           
 
if __name__ == '__main__':
    begin_time = time()
    nn = BP_NET()
    nn.test()
    end_time = time()
    print("running time:",end_time-begin_time)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值