【源码阅读】GAT:GRAPH ATTENTION NETWORKS

本文介绍了GAT(Graph Attention Networks)的论文背景、源码解读,详细阐述了GAT模型的构建过程,包括评分函数、注意力机制等关键点,并提供了参考代码链接,旨在帮助读者理解GAT的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

简介

Hello!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
唯有努力💪
 
本文仅记录自己感兴趣的内容

论文简介

原文链接:

  • https://arxiv.org/abs/1710.10903

会议: ICLR 2018 (CCF-A)

代码:

  • http
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值