《李沐:动手学深度学习v2 pytorch版》第3章:线性神经网络(3.4-3.6 softmax回归)

本文详细介绍了softmax回归,包括其在分类问题中的应用、网络架构设计、softmax函数的作用、损失函数的选择以及从零开始的实现。文章还讨论了softmax回归中的数值问题及其解决方案,以及在实际场景中的局限性,如大量可选单词的预测问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.4 softmax回归

3.4.1 分类问题

回归可以用于预测多少的问题。 比如预测房屋被售出价格,或者棒球队可能获得的胜场数,又或者患者住院的天数。
事实上,我们也对分类问题感兴趣:不是问“多少”,而是问“哪一个”:
某个电子邮件是否属于垃圾邮件文件夹?
某个用户可能注册或不注册订阅服务?
某个图像描绘的是驴、狗、猫、还是鸡?
某人接下来最有可能看哪部电影?
通常,机器学习实践者用分类这个词来描述两个有微妙差别的问题:

  1. 我们只对样本的“硬性”类别感兴趣,即属于哪个类别;
  2. 我们希望得到“软性”类别,即得到属于每个类别的概率。 这两者的界限往往很模糊。其中的一个原因是:即使我们只关心硬类别,我们仍然使用软类别的模型。
    在这里插入图片描述

回归问题和分类问题的区别

回归问题根据输入数据预测一个连续的数值结果,其输出是连续的实数值;
分类问题将输入数据映射到有限的离散类别之一,其输出是离散的类别标签。

3.4.2 网络架构

为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。 为了解决线性模型的分类问题,我们需要和输出一样多的仿射函数(affine function)。 每个输出对应于它自己的仿射函数。 在我们的例子中,由于我们有4个特征和3个可能的输出类别, 我们将需要12个标量来表示权重(带下标的 w), 3个标量来表示偏置(带下标的 b )。 下面我们为每个输入计算三个未规范化的预测(logit): o1 、 o2和 o3 。
在这里插入图片描述
我们可以用神经网络图来描述这个计算过程。 与线性回归一样,softmax回归也是一个单层神经网络。 由于计算每个输出 o1 、 o2 和 o3取决于所有输入 x1、 x2、 x3和 x4, 所以softmax回归的输出层也是全连接层。

在softmax回归也是全连接层

3.4.4 softmax运算

然而我们能否将未规范化的预测 o直接视作我们感兴趣的输出呢? 答案是否定的。 因为将线性层的输出直接视为概率时存在一些问题: 一方面,我们没有限制这些输出数字的总和为1。 另一方面,根据输入的不同,它们可以为负值。 这些违反了 2.6节中所说的概率基本公理。
要将输出视为概率,我们必须保证在任何数据上的输出都是非负的且总和为1。 此外,我们需要一个训练的目标函数,来激励模型精准地估计概率。 例如, 在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。 这个属性叫做校准(calibration)。
社会科学家邓肯·卢斯于1959年在选择模型(choice model)的理论基础上 发明的softmax函数正是这样做的: softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持 可导的性质。 为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。 为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。如下式:
在这里插入图片描述
看起来softmax函数并不是一个线性模型,其实它是一个线性模型,因为softmax回归的输出仍然由输入特征的仿射变换决定。

3.4.5 损失函数

使用交叉熵损失:

3.6 softmax回归的从零开始实现

本节我们将使用Fashion-MNIST数据集,详情见3.5解,并设置数据迭代器的批量大小为256。

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.6.1 初始化模型参数

原始数据集中的每个样本都是 28×28的图像。 本节将展平每个图像,把它们看作长度为784的向量。 在后面的章节中,我们将讨论能够利用图像空间结构的特征, 但现在我们暂时只把每个像素位置看作一个特征。
回想一下,在softmax回归中,我们的输出与类别一样多。 因为我们的数据集有10个类别,所以网络输出维度为10。 因此,权重将构成一个 784×10的矩阵, 偏置将构成一个 1×10的行向量。 与线性回归一样,我们将使用正态分布初始化我们的权重W,偏置初始化为0。

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

3.6.2 定义softmax操作

回想一下,实现softmax由三个步骤组成:
1.对每个项求幂(使用exp);
2.对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
3.将每一行除以其规范化常数,确保结果的和为1。
在这里插入图片描述

def softmax(X):
    X_exp = torch.exp(X)  # 对输出矩阵中的每个元素求幂
    partition = X_exp.sum(1, keepdim=True)  # 按行求和
    return X_exp / partition  # 这里应用了广播机制

这种简单直接地定义softmax操作会留下隐患: 矩阵中的非常大或非常小的元素可能造成数值上溢或下溢,我们在后面会提到解决方式。

3.6.3 定义模型

定义softmax操作后,我们可以实现softmax回归模型。 下面的代码定义了输入如何通过网络映射到输出。 注意,将数据传递到模型之前,我们使用reshape函数将每张原始图像展平为向量。

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

3.6.4 定义损失函数

这里我们使用交叉熵损失函数

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

3.6.5 分类精度

给定预测概率分布y_hat,当我们必须输出硬预测(hard prediction)时, 我们通常选择预测概率最高的类。 许多应用都要求我们做出选择。如Gmail必须将电子邮件分类为“Primary(主要邮件)”、 “Social(社交邮件)”“Updates(更新邮件)”或“Forums(论坛邮件)”。 Gmail做分类时可能在内部估计概率,但最终它必须在类中选择一个。

当预测与标签分类y一致时,即是正确的。 分类精度即正确预测数量与总预测数量之比。 虽然直接优化精度可能很困难(因为精度的计算不可导), 但精度通常是我们最关心的性能衡量标准,我们在训练分类器时几乎总会关注它。

为了计算精度,我们执行以下操作。 首先,如果y_hat是矩阵,那么假定第二个维度存储每个类的预测分数。 我们使用argmax获得每行中最大元素的索引来获得预测类别。 然后我们将预测类别与真实y元素进行比较。 由于等式运算符“==”对数据类型很敏感, 因此我们将y_hat的数据类型转换为与y的数据类型一致。 结果是一个包含0(错)和1(对)的张量。 最后,我们求和会得到正确预测的数量。

def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

这里定义一个实用程序类Accumulator,用于对多个变量进行累加。 在上面的evaluate_accuracy函数中, 我们在Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量。 当我们遍历数据集时,两者都将随着时间的推移而累加。

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

3.6.6 训练

在我们看过 3.2节中的线性回归实现, softmax回归的训练过程代码应该看起来非常眼熟。 在这里,我们重构训练过程的实现以使其可重复使用。 首先,我们定义一个函数来训练一个迭代周期。 请注意,updater是更新模型参数的常用函数,(就是优化器的意思)它接受批量大小作为参数。 它可以是d2l.sgd函数,也可以是框架的内置优化函数。

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

在展示训练函数的实现之前,我们定义一个在动画中绘制数据的实用程序类Animator, 它能够简化本书其余部分的代码。请注意,如果最后运行结果没有动态图片,请在add函数的倒数第二行加上d2l.plt.draw() d2l.plt.pause(0.001)

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        # d2l.plt.draw()
        # d2l.plt.pause(0.001)
        display.clear_output(wait=True)

接下来我们实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。 该训练函数将会运行多个迭代周期(由num_epochs指定)。 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估。 我们将利用Animator类来可视化训练进度。

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    # 这是画图的代码,可以不管
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
                     
    # 这是训练的代码
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
        
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

作为一个从零开始的实现,我们使用 3.2节中定义的 小批量随机梯度下降来优化模型的损失函数,设置学习率为0.1。

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

现在,我们训练模型10个迭代周期。 请注意,迭代周期(num_epochs)和学习率(lr)都是可调节的超参数。 通过更改它们的值,我们可以提高模型的分类精度。

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

3.6.7 预测

现在训练已经完成,我们的模型已经准备好对图像进行分类预测。 给定一系列图像,我们将比较它们的实际标签(文本输出的第一行)和模型预测(文本输出的第二行)。

def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

本章练习

1.本节直接实现了基于数学定义softmax运算的softmax函数。这可能会导致什么问题?提示:尝试计算exp(50)的大小。
答:可能会导致数值溢出。

2.本节中的函数cross_entropy是根据交叉熵损失函数的定义实现的。它可能有什么问题?提示:考虑对数的定义域。
答:有些可能无限接近于零,有些可能会超过long的数值范围而溢出。

3.请想一个解决方案来解决上述两个问题。
答:计算之前先确定输入的阈值,避免输出超出long的范围

4.返回概率最大的分类标签总是最优解吗?例如,医疗诊断场景下可以这样做吗?
答:不是最优解。

5.假设我们使用softmax回归来预测下一个单词,可选取的单词数目过多可能会带来哪些问题?
答:计算量可能会增大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值