#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
import matplotlib as mpl
def iris_type(s):
it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
return it[s]
# 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'
if __name__ == "__main__":
mpl.rcParams['font.sans-serif'] = [u'SimHei'] # 黑体 FangSong/KaiTi
mpl.rcParams['axes.unicode_minus'] = False
# 显示树
path = 'E:\pyCharmprojects\homework\iris.csv' # 数据文件路径
iris_data = pd.read_csv(path, header=None)
x_data, y = iris_data[list(range(4))], iris_data[4]
y = pd.Categorical(y).codes #把文本数据进行编码,比如a b c编码为 0 1 2
feature_combination = [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]
plt.figure(figsize=(8, 6), facecolor='#FFFFFF') # 设置图的比例
for i, combination in enumerate(feature_combination):
随机森林鸢尾花数据实现
最新推荐文章于 2025-07-09 22:47:53 发布