F
题目描述
有一个nm格的迷宫(表示有n行、m列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这nm个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-l表示无路)。
请统一用 左上右下的顺序拓展,也就是 (0,-1),(-1,0),(0,1),(1,0)
输入
第一行是两个数n,m( 1 < n , m < 15 ),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。
输出
所有可行的路径,描述一个点时用(x,y)的形式,除开始点外,其他的都要用“->”表示方向。
如果没有一条可行的路则输出-1。
样例输入
5 6
1 0 0 1 0 1
1 1 1 1 1 1
0 0 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 1
1 1
5 6
样例输出
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
提示
【算法分析】
用一个a数组来存放迷宫可走的情况,另外用一个数组b来存放哪些点走过了。每个点用两个数字来描述,一个表示行号,另一个表示列号。对于某一个点(x,y),四个可能走的方向的点描述如下表:
2
1 x,y 3
4
对应的位置为:(x, y-1),(x-1, y),(x, y+1),(x+1, y)。所以每个点都要试探四个方向,如果没有走过(数组b相应的点的值为0)且可以走(数组a相应点的值为1)同时不越界,就走过去,再看有没有到达终点,到了终点则输出所走的路,否则继续走下去。
这个查找过程用search来描述如下:
procedure search(x, y, b, p);{x,y表示某一个点,b是已经过的点的情况,p是已走过的路}
begin
for i:=1 to 4 do{分别对4个点进行试探}
begin
先记住当前点的位置,已走过的情况和走过的路;
如果第i个点(xl,y1)可以走,则走过去;
如果已达终点,则输出所走的路径并置有路可走的信息,
否则继续从新的点往下查找search(xl,y1,b1,p1);
end;
end;
有些情况很明显是无解的,如从起点到终点的矩形中有一行或一列都是为0的,明显道路不通,对于这种情况要很快地“剪掉”多余分枝得出结论,这就是搜索里所说的“剪枝”。从起点开始往下的一层层的结点,看起来如同树枝一样,对于其中的“枯枝”——明显无用的节点可以先行“剪掉”,从而提高搜索速度。
//
// main.cpp
// DFS
//
// Created by 李 on 2021/3/26.
// Copyright © 2021年 李. All rights reserved.
//
#include <iostream>
#include <vector>
using namespace std;
int n,m;
struct point {
int i,j;
point(int i1,int j1):i(i1),j(j1){}
};
vector<point> road;
int map[20][20];
int HashTable[20][20] = {0};
int flag = 0;
int endi,endj;
int xx[4] = {0,-1,0,1};
int yy[4] = {-1,0,1,0};
void DFS(int i,int j)
{
if(i<0 || j<0 || i>n ||j>m)
return ;
HashTable[i][j] = 1;
//cout<<i<<" "<<j<<" "<<HashTable[5][6]<<endl;
if(i==endi && j==endj)
{
flag = 1;
cout<<"("<<road[0].i<<","<<road[0].j<<")";
for(int k=1;k<road.size();k++)
{
cout<<"->("<<road[k].i<<","<<road[k].j<<")";
}
cout<<endl;
HashTable[i][j] = 0;
return;
}
for(int k=0;k<4;k++) {
int kx = i+xx[k];
int ky = j+yy[k];
if(kx>=0 && ky>=0 && kx<=n && ky<=m && map[kx][ky]==1 && HashTable[kx][ky]==0) {
road.push_back(point(kx, ky));
DFS(kx, ky);
road.pop_back();
}
}
HashTable[i][j] = 0;
}
int main(int argc, const char * argv[]) {
cin>>n>>m;
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
cin>>map[i][j];
// cout<<map[i][j]<<" ";
}
// cout<<endl;
}
int starti,startj;
cin>>starti>>startj>>endi>>endj;
road.push_back(point(starti,startj));
DFS(starti, startj);
if(!flag) cout<<-1<<endl;
return 0;
}