Dynamics 365(online) 把product的图片直接显示在Form页面上

Dynamic 365(online)是MS推出云端的CRM系统,每个entity都有一个字段叫entityimage,常用是用于存储图片的,在product这个实体中,我这公司的产品需要同步至product表,产品有一个图片属性,但Dynamics 365(online)自带的图片与显示功能如下图,并非我想要,位于左上角的logo处,双击时会弹框显示,但图片显示的大小有限
在这里插入图片描述
为此,想让图片显示变大,并且非双击后才显示,当我打开product的详细信息页面时直接显示在某个区域内,用户可以直观的看到,效果图如下
在这里插入图片描述
我是怎么实现图上的效果呢?

  1. Dynamics 365(online)的图片是以什么样的方式显示的,我们把图片拖到独立的窗口查看它的路径会发现,它就是一个独立的网页(如下网址信息),显示不同的产品的图片只需要传入product 的guid给它
  2. https://xxxxxxxx.crm5.dynamics.com/image/download.aspx?attribute=entityimage&entity=product&id=%7b6E8A882C-0E93-EA11-A812-000D3AA0FE67%7d
### LMS Algorithm for MG Sequence Prediction in Time Series Analysis The Least Mean Squares (LMS) algorithm is an adaptive filter that iteratively adjusts its coefficients to minimize the mean square error between the desired signal and the output of the adaptive filter. For predicting sequences like those generated by the Mackey-Glass (MG) equation—a benchmark nonlinear time series—this approach can be particularly useful. In applying the LMS algorithm to predict MG sequences: - The input vector at each iteration includes past values from the MG sequence. - An initial set of weights or coefficients are chosen randomly or based on prior knowledge. - These weights get updated according to the difference between actual future points within the MG sequence and predictions made using current weight estimates. Mathematically, updating these weights follows a simple rule where new weights equal old ones plus twice the learning rate times the error multiplied element-wise with the transposed input vector[^3]. For implementation purposes, consider Python code demonstrating how one might apply such logic when working specifically towards forecasting elements derived via the Mackey-Glass differential delay equation model: ```python import numpy as np def lms_predict(mg_series, mu=0.01, n_taps=20): """ Predicts next value(s) in mg_series using LMS algorithm Parameters: mg_series : array_like Input data containing historical observations up until now. mu : float Learning rate controlling step size during adaptation process. n_taps : int Number of previous samples used as inputs into predictor system. Returns: predicted_values : ndarray Array holding forecasted outcomes after processing entire dataset once through. """ # Initialize variables needed throughout execution loop below... w = np.zeros(n_taps) # Weight vector initialized all zeros initially X = np.atleast_2d(np.flipud([mg_series[-n_taps:]])) # Latest 'n_tap' entries form first feature row d = mg_series[n_taps:] # Desired response targets start beyond earliest features seen above y_pred = [] # Placeholder list collecting outputs along way... for i in range(len(d)): u = np.append(X[i], 1.) # Append bias term onto end making sure dot product works correctly later err = d[i] - sum(w * u[:-1]) # Compute discrepancy between target versus what our linear combiner thinks it should see here w += 2*mu*err*u[:-1] # Update rule adjusting parameters proportionally relative magnitude observed mistake just committed y_pred.append(sum(w * u[:-1])) # Store result obtained post adjustment phase mentioned immediately preceding line return np.array(y_pred) # Example usage generating synthetic test case suitable feeding directly aforementioned function definition provided earlier.. from scipy.integrate import odeint import matplotlib.pyplot as plt def mg_eq(x,t,beta,gamma,n,tau): # Define ODE representing dynamics underlying generation mechanism behind real-world phenomena modeled well enough by chaotic attractors similar structure found inside human cardiovascular circulation patterns etc. dxdt=(beta*x[t-n]-gamma*x)/((1+x**10)*tau)+np.random.normal(0,.1) return dxdt time=np.linspace(0,500,num=int(5e4)) X0=[1.2] sol=odeint(lambda x,t: mg_eq(x,t,0.2,0.1,17,10),X0,time)[::10].flatten() plt.plot(sol); plt.show(); predictions=lms_predict(sol,mu=.0001,n_taps=50) plt.figure() plt.plot(predictions,label='Predictions') plt.plot(sol[50:],label='Actual Values',alpha=.6) plt.legend(); plt.show(); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fei-AX&CRM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值