一、环境
1. autodl 租用3090
镜像选择PyTorch 最新版本
2. 安装依赖:
pip install transformers==4.46.3
pip install fastapi==0.104.1
pip install uvicorn==0.24.0.post1
pip install accelerate==0.26.1
3、下载phi模型
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Phi-3-mini-4k-instruct', cache_dir='/root/autodl-tmp/phi3', revision='master')
下载完成后,模型存储在:
/root/autodl-tmp/phi3/LLM-Research/Phi-3-mini-4k-instruct/
4、请求fastapi启动模型:
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import uvicorn
import json
import datetime
import torch
from threading import Thread
import queue
# 设置设备参数
DEVICE = "cuda" # 使用CUDA
DEVICE_ID = "0" # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
result_queue = queue.Queue()
# 清理GPU内存函数
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def generate_text(model, generation_kwargs):
with torch.no_grad():
result = model.generate(**generation_kwargs)
result_queue.put(result) # 将结果放入队列
# 创建FastAPI应用
app = FastAPI()
# 处理POST请求的端点
@app.post("/")
async def inference(request: Request):
global model, tokenizer # 声明全局变量以便在函数内部使用模型和分词器
json_post_raw = await request.json() # POST请求的数据
json_post = json.dumps(json_post_raw) # 将JSON数据转换为字符串
json_post_list = json.loads(json_post) # 将字符串转换为Python对象
streamer = TextIteratorStreamer(tokenizer)
prompt = json_post_list.get('prompt') # 获取请求中的提示
print(prompt)
#streamer = TextIteratorStreamer(tokenizer)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
generation_kwargs = {
**inputs,
'max_new_tokens': 2048,
'do_sample': True,
'top_p': 0.9,
'temperature': 0.8,
'pad_token_id': tokenizer.eos_token_id,
'max_time': 150
}
generated_text_ids = model.generate(**generation_kwargs)
print(type(generated_text_ids)) # 应该是 <class 'torch.Tensor'>
print(generated_text_ids.shape) # 应该是一维的,例如 (N,)
# 如果需要,可以将生成的 token IDs 转换为文本
generated_text = tokenizer.decode(generated_text_ids[0].tolist(), skip_special_tokens=True)
print(generated_text)
now = datetime.datetime.now() # 获取当前时间
time = now.strftime("%Y-%m-%d %H:%M:%S") # 格式化时间为字符串
answer = {
"response": generated_text,
"status": 200,
"time": time
}
# 构建日志信息
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(generated_text) + '"'
print(log) # 打印日志
torch_gc() # 执行GPU内存清理
return answer # 返回响应
if __name__ == '__main__':
model_name_or_path = '/root/autodl-tmp/phi3/LLM-Research/Phi-3-mini-4k-instruct'
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
).eval()
# model = torch.compile(model)
uvicorn.run(app, host='0.0.0.0', port=9002, workers=1)
5、测试接口:
curl -X POST "http://127.0.0.1:9002" -H 'Content-Type: application/json' -d '{"prompt": "你好,wirite a c++ function"}'
大模型能返回一段c++代码