1、dijkstra(堆优化版)
堆优化细节
其实思路依然是 dijkstra 三部曲:
- 第一步,选源点到哪个节点近且该节点未被访问过
- 第二步,该最近节点被标记访问过
- 第三步,更新非访问节点到源点的距离(即更新minDist数组)
只不过之前是 通过遍历节点来遍历边,通过两层for循环来寻找距离源点最近节点。 这次我们直接遍历边,且通过堆来对边进行排序,达到直接选择距离源点最近节点。
先来看一下针对这三部曲,如果用 堆来优化。
那么三部曲中的第一步(选源点到哪个节点近且该节点未被访问过),我们如何选?
我们要选择距离源点近的节点(即:该边的权值最小),所以 我们需要一个 小顶堆 来帮我们对边的权值排序,每次从小顶堆堆顶 取边就是权值最小的边。
C++定义小顶堆,可以用优先级队列实现,代码如下:
// 小顶堆
class mycomparison {
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};
// 优先队列中存放 pair<节点编号,源点到该节点的权值>
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;
(pair<int, int>
中 第二个int 为什么要存 源点到该节点的权值,因为 这个小顶堆需要按照权值来排序)
有了小顶堆自动对边的权值排序,那我们只需要直接从 堆里取堆顶元素(小顶堆中,最小的权值在上面),就可以取到离源点最近的节点了 (未访问过的节点,不会加到堆里进行排序)
所以三部曲中的第一步,我们不用 for循环去遍历,直接取堆顶元素:
// pair<节点编号,源点到该节点的权值>
pair<int, int> cur = pq.top(); pq.pop();
第二步(该最近节点被标记访问过) 这个就是将 节点做访问标记,和 朴素dijkstra 一样 ,代码如下:
// 2. 第二步,该最近节点被标记访问过
visited[cur.first] = true;
(cur.first
是指取 pair<int, int>
里的第一个int,即节点编号 )
第三步(更新非访问节点到源点的距离),这里的思路 也是 和朴素dijkstra一样的。
但很多录友对这里是最懵的,主要是因为两点:
- 没有理解透彻 dijkstra 的思路
- 没有理解 邻接表的表达方式
我们来回顾一下 朴素dijkstra 在这一步的代码和思路(如果没看过我讲解的朴素版dijkstra,这里会看不懂)
// 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
}
}
其中 for循环是用来做什么的? 是为了 找到 节点cur 链接指向了哪些节点,因为使用邻接矩阵的表达方式 所以把所有节点遍历一遍。
而在邻接表中,我们可以以相对高效的方式知道一个节点链接指向哪些节点。
再回顾一下邻接表的构造(数组 + 链表):
假如 加入的cur 是节点 2, 那么 grid[2] 表示的就是图中第二行链表。 (grid数组的构造我们在 上面 「图的存储」中讲过)
所以在邻接表中,我们要获取 节点cur 链接指向哪些节点,就是遍历 grid[cur节点编号] 这个链表。
这个遍历方式,C++代码如下:
for (Edge edge : grid[cur.first])
(如果不知道 Edge 是什么,看上面「图的存储」中邻接表的讲解)
cur.first
就是cur节点编号, 参考上面pair的定义: pair<节点编号,源点到该节点的权值>
接下来就是更新 非访问节点到源点的距离,代码实现和 朴素dijkstra 是一样的,代码如下:
// 3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (Edge edge : grid[cur.first]) { // 遍历 cur指向的节点,cur指向的节点为 edge
// cur指向的节点edge.to,这条边的权值为 edge.val
if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
minDist[edge.to] = minDist[cur.first] + edge.val;
pq.push(pair<int, int>(edge.to, minDist[edge.to]));
}
}
但为什么思路一样,有的录友能写出朴素dijkstra,但堆优化这里的逻辑就是写不出来呢?
主要就是因为对邻接表的表达方式不熟悉!
以上代码中,cur 链接指向的节点编号 为 edge.to, 这条边的权值为 edge.val ,如果对这里模糊的就再回顾一下 Edge的定义:
确定该节点没有被访问过,!visited[edge.to]
, 目前 源点到cur.first的最短距离(minDist) + cur.first 到 edge.to 的距离 (edge.val) 是否 小于 minDist已经记录的 源点到 edge.to 的距离 (minDist[edge.to])
如果是的话,就开始更新操作。
即:
if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
minDist[edge.to] = minDist[cur.first] + edge.val;
pq.push(pair<int, int>(edge.to, minDist[edge.to])); // 由于cur节点的加入,而新链接的边,加入到优先级队里中
}
同时,由于cur节点的加入,源点又有可以新链接到的边,将这些边加入到优先级队里中。
以上代码思路 和 朴素版dijkstra 是一样一样的,主要区别是两点:
- 邻接表的表示方式不同
- 使用优先级队列(小顶堆)来对新链接的边排序
2、Bellman_ford 算法
本题依然是单源最短路问题,求 从 节点1 到节点n 的最小费用。 但本题不同之处在于 边的权值是有负数了。
从 节点1 到节点n 的最小费用也可以是负数,费用如果是负数 则表示 运输的过程中 政府补贴大于运输成本。
在求单源最短路的方法中,使用dijkstra 的话,则要求图中边的权值都为正数。
我们在 dijkstra朴素版 中专门有讲解:为什么有边为负数 使用dijkstra就不行了。
本题是经典的带负权值的单源最短路问题,此时就轮到Bellman_ford登场了,接下来我们来详细介绍Bellman_ford 算法 如何解决这类问题。
该算法是由 R.Bellman 和L.Ford 在20世纪50年代末期发明的算法,故称为Bellman_ford算法。
Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。
#什么叫做松弛
看到这里,估计大家都比较晕了,为什么是 n-1 次,那“松弛”这两个字究竟是个啥意思?
我们先来说什么是 “松弛”。
《算法四》里面把这个操作叫做 “放松”, 英文版里叫做 “relax the edge”
所以大家翻译过来,就是 “放松” 或者 “松弛” 。
但《算法四》没有具体去讲这个 “放松” 究竟是个啥? 网上很多题解也没有讲题解里的 “松弛这条边,松弛所有边”等等 里面的 “松弛” 究竟是什么意思?
这里我给大家举一个例子,每条边有起点、终点和边的权值。例如一条边,节点A 到 节点B 权值为value,如图:
minDist[B] 表示 到达B节点 最小权值,minDist[B] 有哪些状态可以推出来?
状态一: minDist[A] + value 可以推出 minDist[B] 状态二: minDist[B]本身就有权值 (可能是其他边链接的节点B 例如节点C,以至于 minDist[B]记录了其他边到minDist[B]的权值)
minDist[B] 应为如何取舍。
本题我们要求最小权值,那么 这两个状态我们就取最小的
if (minDist[B] > minDist[A] + value) minDist[B] = minDist[A] + value
也就是说,如果 通过 A 到 B 这条边可以获得更短的到达B节点的路径,即如果 minDist[B] > minDist[A] + value
,那么我们就更新 minDist[B] = minDist[A] + value
,这个过程就叫做 “松弛” 。
以上讲了这么多,其实都是围绕以下这句代码展开:
if (minDist[B] > minDist[A] + value) minDist[B] = minDist[A] + value
这句代码就是 Bellman_ford算法的核心操作。
以上代码也可以这么写:minDist[B] = min(minDist[A] + value, minDist[B])
如果大家看过代码随想录的动态规划章节,会发现 无论是背包问题还是子序列问题,这段代码(递推公式)出现频率非常高的。
其实 Bellman_ford算法 也是采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。
(如果理解不了动态规划的思想也无所谓,理解我上面讲的松弛操作就好)
那么为什么是 n - 1次 松弛呢?
这里要给大家模拟一遍 Bellman_ford 的算法才行,接下来我们来看看对所有边松弛 n - 1 次的操作是什么样的。
我们依然使用minDist数组来表达 起点到各个节点的最短距离,例如minDist[3] = 5 表示起点到达节点3 的最小距离为5
#模拟过程
初始化过程。
起点为节点1, 起点到起点的距离为0,所以 minDist[1] 初始化为0
如图:
其他节点对应的minDist初始化为max,因为我们要求最小距离,那么还没有计算过的节点 默认是一个最大数,这样才能更新最小距离。
对所有边 进行第一次松弛: (什么是松弛,在上面我已经详细讲过)
以示例给出的所有边为例:
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5
接下来我们来松弛一遍所有的边。
边:节点5 -> 节点6,权值为-2 ,minDist[5] 还是默认数值max,所以不能基于 节点5 去更新节点6,如图:
(在复习一下,minDist[5] 表示起点到节点5的最短距离)
边:节点1 -> 节点2,权值为1 ,minDist[2] > minDist[1] + 1 ,更新 minDist[2] = minDist[1] + 1 = 0 + 1 = 1 ,如图:
边:节点5 -> 节点3,权值为1 ,minDist[5] 还是默认数值max,所以不能基于节点5去更新节点3 如图:
边:节点2 -> 节点5,权值为2 ,minDist[5] > minDist[2] + 2 (经过上面的计算minDist[2]已经不是默认值,而是 1),更新 minDist[5] = minDist[2] + 2 = 1 + 2 = 3 ,如图:
边:节点2 -> 节点4,权值为-3 ,minDist[4] > minDist[2] + (-3),更新 minDist[4] = minDist[2] + (-3) = 1 + (-3) = -2 ,如图:
边:节点4 -> 节点6,权值为4 ,minDist[6] > minDist[4] + 4,更新 minDist[6] = minDist[4] + 4 = -2 + 4 = 2
边:节点1 -> 节点3,权值为5 ,minDist[3] > minDist[1] + 5,更新 minDist[3] = minDist[1] + 5 = 0 + 5 = 5 ,如图:
以上是对所有边进行一次松弛之后的结果。
那么需要对所有边松弛几次才能得到 起点(节点1) 到终点(节点6)的最短距离呢?
对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。
上面的距离中,我们得到里 起点达到 与起点一条边相邻的节点2 和 节点3 的最短距离,分别是 minDist[2] 和 minDist[3]
这里有录友疑惑了 minDist[3] = 5,分明不是 起点到达 节点3 的最短距离,节点1 -> 节点2 -> 节点5 -> 节点3 这条路线 距离才是4。
注意我上面讲的是 对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离,这里 说的是 一条边相连的节点。
与起点(节点1)一条边相邻的节点,到达节点2 最短距离是 1,到达节点3 最短距离是5。
而 节点1 -> 节点2 -> 节点5 -> 节点3 这条路线 是 与起点 三条边相连的路线了。
所以对所有边松弛一次 能得到 与起点 一条边相连的节点最短距离。
那对所有边松弛两次 可以得到与起点 两条边相连的节点的最短距离。
那对所有边松弛三次 可以得到与起点 三条边相连的节点的最短距离,这个时候,我们就能得到到达节点3真正的最短距离,也就是 节点1 -> 节点2 -> 节点5 -> 节点3 这条路线。
那么再回归刚刚的问题,需要对所有边松弛几次才能得到 起点(节点1) 到终点(节点6)的最短距离呢?
节点数量为n,那么起点到终点,最多是 n-1 条边相连。
那么无论图是什么样的,边是什么样的顺序,我们对所有边松弛 n-1 次 就一定能得到 起点到达 终点的最短距离。
其实也同时计算出了,起点 到达 所有节点的最短距离,因为所有节点与起点连接的边数最多也就是 n-1 条边。
截止到这里,Bellman_ford 的核心算法思路,大家就了解的差不多了。
共有两个关键点。
- “松弛”究竟是个啥?
- 为什么要对所有边松弛 n - 1 次 (n为节点个数) ?
那么Bellman_ford的解题解题过程其实就是对所有边松弛 n-1 次,然后得出得到终点的最短路径。