1030: 牛人题目(位运算二)——Power OJ

本文介绍了一种快速判断组合数C(n,k)奇偶性的算法,通过位运算实现,避免了大数运算的复杂性。适用于编程竞赛和数学问题求解。

Description
The binomial coefficient C(n, k) has been extensively studied for its importance in combinatorics. Binomial coefficients can be recursively defined as follows:

C(n, 0) = C(n, n) = 1 for all n > 0;
C(n, k) = C(n − 1, k − 1) + C(n − 1, k) for all 0 < k < n.

Given n and k, you are to determine the parity of C(n, k).
Input
The input contains multiple test cases. Each test case consists of a pair of integers n and k (0 ≤ k ≤ n < 2^31, n > 0) on a separate line.

End of file (EOF) indicates the end of input.
Output
For each test case, output one line containing either a “0” or a “1”, which is the remainder of C(n, k) divided by two.
Sample Input
Raw

1 1
1 0
2 1
Sample Output
Raw

1
1
0


题意:给一个组合数C(n,k),判断是奇数还是偶数。
解题思路:C(n,k)(n>=k) N&k==k 为奇数,否则为偶数.

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{
    long long n,k;//不用long long要mle
    while(scanf("%lld%lld",&n,&k)!=EOF){
        if((n&k)==k)
            printf("1\n");
        else
            printf("0\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值