我们都知道,AI技术正在以可见的速度被应用于各行各业,然而绝大部分业务场景想应用AI技术,都需要算法工程师根据自身业务的标注数据,来进行单独训练,才能打磨出合适的AI模型。如此一来,如何以最低的门槛和成本,实现AI技术落地变成了行业急需解决的问题。
市场上的AI服务非常多,但是在视觉领域,通用的AI服务主要是基于图像的架构来做的,视频时代已经到来,基于图像的AI架构是否还能被广泛应用?阿里云视频云团队专注于视频领域,所以在针对视频的AI处理方面也有独特的思考和实践。3月27日下午,第51期阿里云产品发布会-智能视觉产品隆重发布,阿里云高级计算专场周源针对图像和视频的AI处理有什么不同?团队是如何基于视频构建全新的AI架构?针对AI大量的数据、训练效果不够好、时间与成本消耗大等痛点,他们如何解决等以上问题做了悉数解答。
一、市场上通用的图像架构是怎样的?
市场上大部分AI的服务,输入的都是图像,也就是图片文件,是基于图片进行处理。在业界,图像的算法比较成熟,数量也较多,从大类来看有图像分类、检测、识别、分割等等。大部分AI服务的架构也是基本类似,一般包含图像算法层、引擎框架层、资源管理层、硬件基础层,之后基于各自的业务领域知识,构建一个面向特定领域的AI推理服务,然后通过API提供对外的访问。
二、挑战:视频与图像的不同
随着现在视频(直播、点播、短视频)的越来越广泛应用,内容从原先的图像分析升级到视频分析。因为复用已有的技术以及架构的改造成本等等因素,一般的AI服务一般会保持现有的框架,不同是把视频转换成图像来进行处理。一般做法是按照固定的时间间隔采样截取视频的图像信息,这样整个服务架构不需要做任何改动,只是在最上面一层增加了视频帧截取和结果汇聚的服务。