Mysql介绍

MYSQL

索引相关

什么是索引?

索引是一种数据结构,可以帮助我们快速的进行数据的查找。

索引是个怎样的数据结构呢?

索引的数据结构和具体存储引擎的实现有关,在Mysql中使用较多的索引有Hash索引,B+树索引等,而我们常用的InnoDB存储引擎的默认索引实现为:B+树索引。

Hash索引和B+树索引有什么区别或者有什么优劣势呢?

hash索引底层是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据,B+树底层实现多路平衡查找树,对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据。

区别:

hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询.

因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询.而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围.

  • hash索引不支持使用索引进行排序,原理同上.
  • hash索引不支持模糊查询以及多列索引的最左前缀匹配.原理也是因为hash函数的不可预测.AAAAAAAAB的索引没有相关性.
  • hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询.
  • hash索引虽然在等值查询上较快,但是不稳定.性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差.而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低.

因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度.而不需要使用hash索引。

事务的四种隔离级别(ACID)

A=Atomicity

原子性,要么全部成功,要么全部失败。

C=Consistency

一致性,从一个状态,转移到另一个状态,不会存在中间状态。

I=Isolation

隔离性,一个事务的提交,对其他事务是不可见的。

D=Durability

持久性,一旦事务提交,那么就永远不会改变,不会影响到这个事务的结果。

同时有多个事务在进行会怎么样呢?

多事务的并发进行一般会造成以下几个问题:

  • 脏读: A事务读取到了B事务未提交的内容,而B事务后面进行了回滚.
  • 不可重复读: 当设置A事务只能读取B事务已经提交的部分,会造成在A事务内的两次查询,结果竟然不一样,因为在此期间B事务进行了提交操作.
  • 幻读: A事务读取了一个范围的内容,而同时B事务在此期间插入了一条数据.造成"幻觉".
Mysql四种隔离
  1. ISOLATION_READ_UNCOMMITTED:读未提交
  2. ISOLATION_READ_COMMITTED:读已提交
  3. ISOLATION_REPEATABLE_READ:可重复读
  4. ISOLATION_SERIALIZABLE:串行化
    在这里插入图片描述
什么是脏读,不可重复读,幻读
  • 脏读:简单来说,就是一个事务读取到了另一个事务未提交的数据。

  • 不可重复读:就是说,比如在A事务中进行多次相同的查询,B事务在A事务多次查询之间修改对应表中的数据,导致A事务多次读取的结果不一致。

  • 幻读:举例来说,就是A事务将表中’性别’列的值都更改为1,B事务在A事务修改之后又添加了一条记录,而’性别’的值为0,回过来A再查询所以的记录时会发现有一条记录的’性别’为0,这种情况就是所谓的幻读

事务的七种传播行为
  • PROPAGATION_REQUIRED 表示当前方法必须在一个具有事务的 上下文中运行,如有客户端有事务在进行,那么被调用端将在该事务中运行,否则的话重新开启一个事务。( 如果被调用端发生异常,那么调用端和被调用端事务都将回滚)
  • PROPAGATION_SUPPORTS 表示当前方法不必需要具有一个事务 上下文,但是如果有一个事务的话,它也可以在这个事务中运行。
  • PROPAGATION_MANDATORY 表示当前方法必须在一个事务中运行,如果没有事务,将抛出异常。
  • PROPAGATION_REQUIRES_NEW 总是开启一个新的事务。如果一个事务已经存在,则将这个存在的事务挂起。
  • PROPAGATION_NOT_SUPPORTED 总是非事务地执行,并挂起任何存在的事务。
  • PROPAGATION_NEVER 总是非事务地执行,如果存在一个活动事务,则抛出异常。
  • PROPAGATION_NESTED表示如果当前方法正有一个事务在运行中,则该方法应该运行在一个嵌套事务中 ,被嵌套的事务可以独立于被封装的事务中进行提交或者回滚。如果封装事务存在,并且外层事务抛出异常回滚,那么内层事务必须回滚,反之,内层事务并不影响外层事务。如果封装事务不存在,则同propagation. required的一样。
Innodb使用的是哪种隔离级别呢?

默认是可重复读隔离级别。

对MySQL的锁了解吗?

当数据库有并发事务时,可能会产生数据的不一致,这时候需要一些机制来保证访问的次序,锁机制就是这样的一个机制。

就像酒店的房间,如果大家随意进出,就会出现多人抢夺同一个房间的情况,而在房间上装上锁,申请到钥匙的人才可以入住并且将房间锁起来,其他人只有等他使用完毕才可以再次使用.

Mysql有哪些锁

从锁的类别上来分,分为共享锁和排他锁。

共享锁:又叫读锁,当用户要进行数据的读取时,对数据加上共享锁,共享锁可以同时加上多个。

排他锁:又叫做写锁,当用户需要写入数据时,对数据加上排他锁,排他锁只可以添加一个,和其他的排他锁、共享锁相斥。

用上面的例子来说就是用户的行为有两种,一种是来看房,多个用户一起看房是可以接受的. 一种是真正的入住一晚,在这期间,无论是想入住的还是想看房的都不可以.

表结构设计

为什么要尽量设定一个主键?

主键是数据库确保数据行在整张表唯一性的保障,即时业务上本张表没有逐主键,也建议添加一个自增长的ID列作为主键,设定了主键之后,在后续的CRUD的时候可能更加快速以及确保操作数据范围安全。

主键使用自增ID还是UUID?

推荐使用自增ID,不使用UUID。

因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降.

字段为什么要求定义为not null?

null值会占用更多的字节,且会在程序中造成很多与预期不符的情况.

如果要存储用户的密码散列,应该使用什么字段进行存储?

密码散列,用户身份证等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。

存储引擎相关

MYSQL支持哪些存储引擎?

MYSQL支持多种存储引擎,比如InnoDB,MyISAM,Memory,Archive等等,在多数情况下,直接选择使用InnoDB引擎都是最合适的,InnoDB也是MYSQL的默认存储引擎。

InnoDB和MyISAM有什么区别?
  1. 前者支持事务,后者不支持事务。
  2. 前者支持行级锁,后者支持表级锁。
  3. 前者支持MVCC,后者不支持。
  4. 前者支持外键,后者不支持。
  5. 前者不支持全文索引,后者支持。

零散问题

Mysql中varchar和char有什么区别?
  1. char是一个定长字段,varchar是变长字段,申请的只是最大长度,占用的实际空间为实际字符长度+1。
  2. 检索效率上来说,char>varchar,所以如果确定某个字段的字符长度时,使用char,否则尽量使用varchar。
varchar(10)和int(10)代表什么含义?

varchar的10代表了申请的空间长度,也是可以存储的数据的最大长度。

而int的10只是代表了展示的长度,不足10位以0填充.也就是说,int(1)和int(10)所能存储的数字大小以及占用的空间都是相同的,只是在展示时按照长度展示。

超大分页怎么处理?

解决超大分页,其实主要是靠缓存,可预测性的提前查到内容,缓存至redis等k-V数据库中,直接返回即可.

说一说三个范式
  • 第一范式:每个列都不可再拆分。
  • 第二范式:非主键列完全依赖于主键,而不能是依赖主键的一部分。
  • 第三范式:非主键列只依赖于主键,不依赖于其他非主键。
标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
内容概要:本文详细介绍并展示了基于Java技术实现的微信小程序外卖点餐系统的设计与实现。该系统旨在通过现代信息技术手段,提升外卖点餐管理的效率和用户体验。系统涵盖管理员、外卖员、餐厅和用户四个角色,提供了包括菜品管理、订单管理、外卖员管理、用户管理等功能模块。后台采用SSM框架(Spring + Spring MVC + MyBatis)进行开发,前端使用微信小程序,数据库采用MySQL,确保系统的稳定性和安全性。系统设计遵循有效性、高可靠性、高安全性、先进性和采用标准技术的原则,以满足不同用户的需求。此外,文章还进行了详细的可行性分析和技术选型,确保系统开发的合理性与可行性。 适用人群:计算机科学与技术专业的学生、从事Java开发的技术人员、对微信小程序开发感兴趣的开发者。 使用场景及目标:①为中小型餐饮企业提供低成本、高效的外卖管理解决方案;②提升外卖点餐的用户体验,实现便捷的点餐、支付和评价功能;③帮助传统餐饮企业通过数字化工具重构消费场景,实现线上线下一体化运营。 其他说明:该系统通过详细的系统分析、设计和实现,确保了系统的稳定性和易用性。系统不仅具备丰富的功能,还注重用户体验和数据安全。通过本项目的开发,作者不仅掌握了微信小程序和Java开发技术,还提升了独立解决问题的能力。系统未来仍需进一步优化和完善,特别是在功能模块的细化和用户体验
Retinex理论是计算机视觉和图像处理领域中一种重要的图像增强技术,由生理学家Walter S. McCann和James G. Gilchrist在20世纪70年代提出,旨在模拟人类视觉系统对光照变化的鲁棒性。该理论将图像视为亮度和色度的函数,分别对应局部强度和颜色信息。其核心思想是将图像分解为反射分量(物体自身颜色)和光照分量(环境光影响),通过分离并独立调整这两个分量来增强图像对比度和细节。 在Matlab中实现Retinex算法通常包括以下步骤:首先对输入图像进行预处理,如灰度化或色彩空间转换(例如从RGB到Lab或YCbCr),具体取决于图像特性;然后应用Retinex理论,通常涉及对图像进行高斯滤波以平滑图像,并计算局部对比度。可以采用多尺度Retinex(MSR)或单尺度Retinex(SSR)方法,其中MSR使用不同尺度的高斯滤波器估计光照分量,以获得更平滑的结果;接着对分离后的反射分量进行对比度拉伸或其他对比度增强处理,以提升图像视觉效果;最后将调整后的反射分量与原始光照分量重新组合,生成增强后的图像。如果存在“retinex.txt”文件,其中可能包含实现这些步骤的Matlab代码。通过阅读和理解代码,可以学习如何在实际项目中应用Retinex算法,代码通常会涉及定义图像处理函数、调用Matlab内置图像处理工具箱函数以及设置参数以适应不同图像。 在研究和应用Retinex算法时,需要注意以下关键点:一是参数选择,算法性能依赖于高斯滤波器尺度、对比度拉伸范围等参数,需根据具体应用调整;二是运算复杂性,由于涉及多尺度处理,算法计算复杂度较高,在实时或资源受限环境中需优化或寻找高效实现方式;三是噪声处理,Retinex算法可能放大噪声较大的图像中的噪声,因此实际应用中可能需要结合去噪方法,如中值滤波或非局部均值滤波。通过深入理解和应用Retinex算法,不
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值