Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
与hdu1231的题思路一样,只是变成了输出最大连续子序列的开始序数和最后序数
最大连续子序列和公式:设dp[i]为以第i个元素结尾的连续和的最大值
则有
dp[0]=a[0]
dp[i]=max(dp[i-1]+a[i],a[i])
所以最大连续子序列和就是所有dp中最大的一个
ac代码
#include <iostream>
using namespace std;
int a[100005], p[100005];
int main()
{
int f[20][3];
int k,b, e,h=0;
cin >> e;
while (e)
{
cin >> k;
b = 0;
for (int i = 0; i < k; i++)
{
cin >> a[i];
}
p[0] = a[0]; f[h][0] = a[0]; f[h][1] = 0; f[h][2] = 0;
for (int i = 1; i < k; i++)
{
if (p[i - 1] + a[i] >=a[i])
p[i] = p[i - 1] + a[i];
else { p[i] = a[i]; b= i; }
if (p[i] > f[h][0])
{
f[h][0] = p[i]; f[h][1] = i; f[h][2] = b;
}
}
h++;
e--;
}
for (int j = 1; j <= h; j++)
{
cout << "Case " << j << ":" << endl;
cout << f[j - 1][0] << " " << f[j - 1][2] + 1 << " " << f[j - 1][1] + 1;
if (j != h)cout << endl<<endl;
else cout << endl;
}
}