概念可借鉴参考博客,具体证明见B站电子科大数学学院的视频(貌似用到狄利克雷卷积,反正我没看懂)
前置知识点:整数分块
貌似除了算多少gcd(i,j)=n外,还有别的用处。
矩阵求和
代数学得不好(毕竟不是数院的),大概写了写推导过程
#include<cstdio>
#include<cstring>
#include<iostream>
#include<map>
#include<vector>
#include<string>
#include<algorithm>
#include<cmath>
#include<stack>
#include<queue>
using namespace std;
#define maxn 10000010
#define mkp make_pair
#define inf 1e6
typedef long long ll;
const ll mod = 1e9 + 7;
const double pi = acos(-1.0);
ll sum[maxn], pri[maxn], qq[maxn];
ll n;
int tot = 0, vis[maxn], mu[maxn];
void init()
{
ll i, j;
mu[1] = 1;
for (i = 2; i <= n; i++)
{
if (!vis[i])
{
pri[++tot] = i;
mu[i] = -1;
}
for (j = 1; j <= tot && pri[j] * i <= n; j++)
{
vis[i * pri[j]] = 1;
if (i % pri[j]) mu[i * pri[j]] = -mu[i];
else
{
mu[i * pri[j]] = 0;
break;
}
}
}
for (i = 1; i <= n; i++) sum[i] = (sum[i - 1] + mu[i] + mod) % mod;
for (i = 1; i <= n; i++)
{
qq[i] = (qq[i - 1] + i * i % mod) % mod;
}
}
ll solve(ll tx)
{
ll l, r, ans = 0;
for (l = 1; l <= tx; l = r + 1)
{
ll tw = tx / l;
r = tx / tw;
ans = (ans + (sum[r] - sum[l - 1] + mod) % mod * (tw * tw % mod) % mod) % mod;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
ll i, j, r, l, ans = 0;
cin >> n;
init();
for (l = 1; l <= n; l = r + 1)
{
ll tx = n / l;
r = n / tx;
ans = (ans + (qq[r] - qq[l - 1] + mod) % mod * solve(tx) % mod) % mod;
}
cout << ans << endl;
return 0;
}